

SnipMatch: Using Source Code Context to Enhance
Snippet Retrieval and Parameterization

Doug Wightman1, Zi Ye1, Joel Brandt2, Roel Vertegaal1
1Human Media Lab, Queen’s University

Kingston, ON, K7L 3N6, Canada
{wightman, zi, roel}@cs.queensu.ca

2Advanced Technology Labs, Adobe
San Francisco, CA 94103
joel.brandt@adobe.com

ABSTRACT
Programmers routinely use source code snippets to increase
their productivity. However, locating and adapting code
snippets to the current context still takes time: for example,
variables must be renamed, and dependencies included. We
believe that when programmers decide to invest time in
creating a new code snippet from scratch, they would also
be willing to spend additional effort to make that code
snippet configurable and easy to integrate. To explore this
insight, we built SnipMatch, a plug-in for the Eclipse IDE.
SnipMatch introduces a simple markup that allows snippet
authors to specify search patterns and integration instruc-
tions. SnipMatch leverages this information, in conjunction
with current code context, to improve snippet search and
parameterization. For example, when a search query in-
cludes local variables, SnipMatch suggests compatible
snippets, and automatically adapts them by substituting in
these variables. In the lab, we observed that participants
integrated snippets faster when using SnipMatch than when
using standard Eclipse. Findings from a public deployment
to 93 programmers suggest that SnipMatch has become
integrated into the work practices of real users.
ACM Classification: H.5.2. Information interfaces and
presentation: User Interfaces—prototyping.
Keywords: Example-centric development, prototyping,
natural language processing

INTRODUCTION
Programmers routinely search online for snippets to inte-
grate into their source code [3, 5, 15, 22, 30]. This find-
and-integrate behavior reduces the time to leverage Appli-
cation Programming Interfaces (APIs), libraries, and algo-
rithm implementations [5, 34]. Even when an API is well
understood, snippets provide productivity gains: the time
and effort required is often less than writing the code from
scratch [3].
Despite the benefits of snippet use, substantial time can still
be required to locate and integrate code snippets. Pro-
grammers often must locate and combine multiple code

snippets, rename or typecast variables, and manually locate
and include dependencies [5, 7, 21]. After this complex
integration has been performed, a code snippet may be dis-
carded if it contains errors or otherwise does not work as
expected [4]. Even a small decrease in the time required to
perform this common task — finding and integrating snip-
pets — could cause a qualitative change in behavior [12].
Existing code snippet solutions fall into one of two broad
categories: those that leverage a carefully curated set of
purpose-built snippets [9, 27], and those that either synthe-
size new snippets or mine relevant snippets from large re-
positories [3, 16, 23]. There is a simple trade-off associated
with choosing one of these two approaches: curated collec-

Figure 1. The SnipMatch plug-in for the Eclipse develop-
ment environment. A keyboard shortcut opens the search
window (1) at the programmer’s cursor position. Search re-
sults (2) are updated as the query is typed. The search que-
ry also affects integration: the local variable playerScores is
included in the snippet (2). Snippet integration is previewed
within the existing code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’12, October 7-10, 2012, Cambridge, MA, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00. 	

tions yield higher-quality snippets, but are less complete.
Mined or synthesized snippets can cover a much broader
set of use cases, but may sometimes yield irrelevant, diffi-
cult to understand, or incorrect code.
Our research is driven by two insights:
First, given metadata about integrating a snippet into exist-
ing source code, we can build much more powerful tools
for snippet retrieval and adaptation. In particular, we can
use information provided in the search query, such as local
variable names, to semi-automatically tailor snippets and
facilitate further adaptation. We can also leverage local
code context (e.g. variable types, imported libraries) to rank
and filter results in relation to compatibility with the exist-
ing code. Unfortunately, gathering rich metadata about a
snippet is difficult because users are usually focused on
saving time when they are interacting with snippets. When
a person is creating a snippet, however, she has already
decided to invest time now in order to save time later.
Second, when a person creates a code snippet from scratch,
she is willing to spend a reasonable amount of effort to
make that code snippet configurable and easy to integrate.
While creating a snippet, the author might add metadata
using a snippet markup language. This is a viable method
to obtain search and integration metadata: for example,
variables to be renamed and preconditions to verify com-
patibility with the user’s existing code. To explore these
insights, we built and evaluated SnipMatch, a search inter-
face for finding and integrating curated code snippets.

This work offers three contributions:
1. A search algorithm for curated code snippets that
leverages code context — Curated snippets are ranked,
filtered, and customized based on the code in the develop-
ment environment. SnipMatch builds on prior work in Inte-
grated Development Environment (IDE) search [3, 8, 9, 18,
29]. The SnipMatch search algorithm extends the use of
code context beyond the current programming language
and framework to enhance the ranking of shared, curated
code snippets. Our search algorithm uses the following
features of the programmer’s source code to rank and filter
prospective snippet results: variable types and names, the
cursor position within the abstract syntax tree, program
logic, and code dependencies. We selected these features
because they can be used to determine how closely results
match the existing code. Results that more closely match
the features of the existing code – that is, make use of exist-
ing variables and require fewer modifications – are ranked
higher.
2. A lightweight markup for specifying integration in-
structions for code snippets — Other tools suggest error-
correction source code modifications [7, 8, 13]: for exam-
ple, prompting the user to rename variables after a snippet
has been inserted. These tools require human intervention
because the intended use for a snippet can be ambiguous.
Did the programmer intend to use the code snippet “as is”,

or only part of it? Should the snippet, or the existing code,
be modified when there is an error? An integration tool
requires more information to answer these questions.
3. Insights about how code snippet search tools are
used, derived from the implementation and evaluation
of SnipMatch. We implemented SnipMatch, a snippet
search plug-in for the Eclipse IDE. To better understand
how snippet search tools change the way people program,
we conducted a comparative laboratory study with 16 par-
ticipants and a public deployment with 93 programmers.
We observed that SnipMatch was used to reduce context
switching and as a memory aid. Participants reported that
including snippet arguments in the search box was particu-
larly effective for the two most common usage scenarios:
shortcuts and quick reference.

RELATED WORK
Search Interfaces
Search interfaces [14, 26] can be tailored for specific tasks.
Prior work includes systems to support data analysis [5,
24], web page revisitation [1, 31], and programming [3,
22]. Programming search interfaces can enhance web
search results [15, 22] and, most relevant to our work, lo-
cate code snippets [3, 29]. Locating snippets can be time-
consuming: in one study, 19% of programming time was
spent looking for source code on the Internet [5].
Snippet search interfaces query code repositories to find
keyword [3, 9, 11] and structural [2, 23, 29, 32] matches.
Structural search can include building an internal represen-
tation of the program, while keyword matching is limited to
text analysis. Google code search [11] locates occurrences
of keywords in source code files. Uncommon, domain-
specific search keywords can improve the relevance of re-
sults from this large repository. Blueprint [3] is a develop-
ment environment plug-in that augments Internet keyword
search queries with the language and framework used in the
development environment. Snippets are automatically ex-
tracted from web pages and can be browsed within the
plug-in. While keyword matching can be ineffective for
locating many general code structure or program logic pat-
terns, it is easy to use and can match comments, variables,
dependencies, and other lexical features.
Structural snippet search interfaces perform static analysis
to determine how code functions. For example, structural
search interfaces can locate snippets that create an object of
a certain type from other objects. Finding a Method Invoca-
tion Sequence (MIS) is a common API search task [29, 32,
16, 33]. PARSEWeb [32] ranks code fragments to be in-
corporated into MISs by frequency of use and length. S^6
[28] allows programmers to include simple test cases and
contracts with keyword searches. However, it can be diffi-
cult to ensure that snippets do not contain errors [23] and to
differentiate between similar structural features: for exam-
ple, frameworks and class libraries [2]. Further, Jungloid
[23] and most other structural search interfaces are less
effective when the programmer does not know the names
of relevant classes, methods, or types.

SnipMatch is designed to provide more precise results and
result rankings than these alternatives, but at a cost: some-
one must associate additional data with a code snippet for
its search ranking and automatic integration to be im-
proved. Snippet creators can also specify alternate search
result wording to make snippets easier to find, mitigating
the vocabulary problem [10]. SnipMatch allows program-
mers to enhance the accessibility of snippets that are im-
portant to them.

Snippet Integration
Many different types of modifications can be required to
integrate a code snippet. EUKLAS [7] highlights source
code errors and suggests corrections. EUKLAS can detect
and correct missing JavaScript parameters, function and
variable definitions, and imports. Eclipse Quick Fix [8]
provides similar functionality for Java, and can also correct
some unhandled exceptions. These tools allow program-
mers to quickly resolve many simple errors.
HelpMeOut [13] presents suggestions for correcting com-
piler and runtime errors. Relevant compiler error sugges-
tions are found by examining the source code line refer-
enced in the error. Relevant runtime exception suggestions
are found by examining the stack trace. While HelpMeOut
isn't specifically targeted at snippets, this approach could be
useful for fixing snippet integration mistakes. Rather than
fixing errors, SnipMatch attempts to prevent them from
occurring.
The Codelets system [27] allows authors of example code
to use a simple markup language to indicate which parts of
an example are fixed and which parts the user should edit.
Editable regions can be given names that are then refer-
enced in custom user interfaces for configuring the example
code. In SnipMatch, we extend this idea of providing users
with a lightweight markup language for annotating snip-
pets. In particular, we add syntax for expressing type in-
formation, integration instructions, and external dependen-
cies. Additionally, we leverage this semantic information to
make our code search more powerful.
Blueprint extracted over 100,000 code examples from
blogs, forums, and human-created documentation available
on the Internet [3]. In all of these cases, people expressly
curated and published these snippets with the intention of
sharing. SnipMatch is also dependent on programmers’
willingness to curate and share snippets.

Sloppy Interpretation
Sloppy interpreters have lenient syntax requirements [25].
Inky [25] interprets keyword searches as web tasks and
allows the user to click a button to perform them. For ex-
ample, the top search result for the query
“johnd@gmail.com leaving the office now” might be “email
johnd@gmail.com about “leaving the office now”. The key-
word interpreter tokenizes the query, detects token types
(e.g. email addresses), matches the tokens with pre-defined
functions, and returns an ordered list of results. Koala [20]
allows users to write scripts to automate web tasks by typ-

ing sequences of commands. The interpreter can recognize
the commands “type UIST into search field” and “click
search button”.
Koala built on previous work translating keyword com-
mands into executable code [19]. This previous work was
also the basis for a project that automatically generated
code snippets from search queries [18]. Snippets are creat-
ed by nesting methods, extracted from open source pro-
jects, with names similar to the search keywords. Unfortu-
nately, this alternative to a code repository is often not
practical because it can create semantically incorrect code.
SnipMatch does not generate snippets from extracted
method calls. Similar to Inky, SnipMatch matches search
queries with pre-defined snippets. This prevents semantic
errors while preserving the primary benefits of sloppy in-
terpretation: minimal wording and syntax requirements.

ENHANCING SNIPPET SEARCH WITH CODE CONTEXT
Programmers can use SnipMatch to find and integrate Java
snippets from within the development environment. Press-
ing Ctrl-Enter while editing source code opens the Snip-
Match search interface. The top search result is previewed
inline as the programmer types in the search box. Figure 1
shows the result of typing “sort p” in the search box. The
array playerScores is included in the top search result be-
cause this snippet has a search pattern with a parameter.
The SnipMatch search algorithm matches search queries to
search patterns. A search pattern is a text description of the
effect of the code snippet, interspersed with placeholders
for snippet parameters. For example, this is the text de-
scription for the search pattern shown in Figure 1: “sort
<array> in ascending order”. “<array>” refers to a snippet
parameter. To prevent type mismatches, the parameter type
can also be specified in the search pattern. Snippets can
have multiple search patterns.
When a snippet is submitted to SnipMatch, a lightweight
markup language can be used to specify where search pat-
tern parameters will appear in the snippet source code. This
markup can also be used to import dependencies as re-
quired and define preconditions for snippets to appear in

Figure 2. SnipMatch snippet search overview

the search results. After results are returned from the cen-
tral server, the Eclipse plug-in filters and customizes the
snippets based on the markup and the code context in the
development environment (Figure 2).
SnipMatch snippets can be private or public. Public snip-
pets are available to all users, while private snippets appear
only in the snippet creator’s search results. To ensure cor-
rectness and maintain a consistent level of snippet quality,
system moderators review snippets that are added to the
public repository.

Design Rationale
We are interested in reducing the time and effort required
to both locate and integrate code snippets. As described in
the introduction, snippet integration can be complicated and
time-consuming. Previous approaches for supporting snip-
pet integration include methods that prompt the user with
options [7, 8, 13] and methods that generate snippets from
keywords based on rules [18, 19]. Although helpful to
highlight problems that require attention, user prompts still
require code comprehension, decision-making, and manual
input prior to testing. Generative methods frequently create
semantic errors.
One viable alternative that does not require manual input at
the time of integration is for programmers to annotate snip-
pets when they are created with additional machine-
readable markup language. This information can then be
used by the search interface to provide enhanced search
ranking and snippet integration. Programmers already cre-
ate Eclipse Templates for personal use, and share and
comment on code snippets online [11, 22]. We believe that
programmers will similarly contribute search patterns and
integration markups if they will improve snippet usability.
As with Wikipedia, relatively few individuals need to con-
tribute for the system to be useful for many.

IMPLEMENTATION
The SnipMatch plug-in was written in Java using the
Eclipse Plug-in Development Environment (PDE). The
plug-in communicates with the server through HTTP re-
quests. Server-side, the search algorithm is written in C++
and PHP, and snippets are stored in a MySQL database.

During the evaluation, our server was located in the United
States.

Snippet Search
Search Window. The search window (Figure 1) has two
main components: a static text field for the search query
input, and a dynamically resizing region below for search
results. The ordered list of search results is updated as the
contents of the text field are modified. This provides the
user with instant feedback, facilitating snippet discovery
and step-wise refinement of search queries. To increase
readability, search results have basic syntax highlighting;
different font colors are used for keywords, arguments, and
placeholders for missing arguments.
Argument Editing. If a user attempts to insert a snippet with
missing arguments, the argument editor dialog appears to
the right of the search window (Figure 3). The dialog pre-
sents a structured view of the snippet parameters and in-
cludes text fields for entering the arguments. Changes to
the arguments are immediately reflected in the source code.
The editor can also be manually invoked for any highlight-
ed result by pressing Ctrl-Enter.
Tab Completion. Since search results are updated as the
search query is typed, the user can refine the search query
based on the results. For example, the search query “read”
might return some results that begin with “read lines from
file”, and other results that begin with “read character from
keyboard”. The user can narrow the results to only include
those pertaining to file operations by changing the search
query. Tab completion facilitates this process. When the
user presses Tab, the search query text is autocompleted up
to the next parameter in the currently highlighted result. For
example, if the search query is “read”, and the highlighted
result is “read lines from file <filePath>”, pressing Tab will
change the search query to “read lines from file ”.
Snippet Icons. A small group of icons is docked in the low-
er right corner of the currently highlighted result (Figure 5).
Most of these icons are buttons that allow the user to send
feedback about the result. Feedback options include rating,
flagging, and commenting. All user feedback is logged for
manual analysis. A yellow warning icon appears when the
snippet includes changes to the source code that are omitted

Figure 3. The argument editor (right window) is displayed if the user presses Enter before all arguments have been specified. This struc-
tured view prompts the user with text fields for each search pattern parameter. The user’s code is modified as the text field is completed.

from the preview, such as helper classes. Resting the mouse
over this icon reveals a summary of all the hidden changes.

Snippet Submission
The SnipMatch Eclipse plug-in includes an interface for
adding and editing code snippets. This interface allows
users to modify search patterns, and includes features to
facilitate the addition of integration markups to the snippet
code. SnipMatch uses the Java type hierarchy to recognize
standard and user-created parameter types that appear in
search patterns.

Search Results
There are three different types of search results: in-order,
unordered, unsigned. After search results are found, they
are ranked, filtered, and shown to the user in a single list.
In-order. An in-order result is a snippet with a search pat-
tern that begins with exactly the same sequence of charac-
ters as the search query. For example, the result “read from
file <filePath>” is an in-order result for the search query
“read from”.

Unordered. An unordered result is a snippet whose search
patterns do not begin with the search query, but do contain
one or more tokens from the search query. For example, the
result “read from file <filePath>” is an unordered result for
the search query “file”.

Unsigned. An unsigned result is a snippet that does not yet
have a search pattern, but whose code contains one or more
tokens from the search query. These snippets can be re-
trieved not only from the SnipMatch snippet database, but
also from external snippet repositories.

Result Ranking
Results are first ranked by type. In-order results appear
first, followed by unordered. Unsigned results appear after
all other results. In addition to being ranked by type, each
result type uses a different set of ranking criteria.
In-order. In-order results are first ranked by the number of
search query tokens matching each search pattern. Next,
results are ranked by the number of missing arguments.
Results with fewer missing arguments are ranked higher.

Unordered. Unordered results are ranked based on term
frequency–inverse document frequency (tf-idf) [17]. To-
kens from the search query are matched against search pat-
terns. Search patterns that contain more query tokens or
query tokens that appear less frequently in other search
patterns are ranked higher. User feedback (e.g. votes and
frequency of selection) will be incorporated in the future.
Unsigned. The same ranking criteria as for unordered re-
sults are applied, except that the search query is matched
against the snippet code instead of the search patterns.

Result Filtering and Contextualization
Since the SnipMatch server has limited information about
the user’s code, the client modifies the returned search re-
sults before they are shown to the user. This is completed
in two stages: result filtering and result contextualization.

Filtering. Since the SnipMatch server does not have access
to the Java type hierarchy, some search results may contain
incompatible types. The client performs a type compatibil-
ity test on each search result and filters out the results that
fail the test. For example, the query “for x” may return a
result that tries to create a for loop using a hypothetical
local integer x. However, if the client detects a local varia-
ble x of another type, this search result will be removed.
The client also filters results that are incompatible with the
existing code. For example, if integration markup precondi-
tions are not met.
Contextualization. If the user omits an argument, or does
not finish typing an argument, the client analyzes the user’s
source code to find variables within the current scope that
can serve as arguments. This list of possible substitutions is
used to create variations on the original, incomplete search
result. These client-generated results are presented to the
user instead of the original. In Figure 1, the client detects a
compatible local variable (playerScores) and uses it to
complete the server’s search results. After variables are
matched with parameters, the snippet is customized accord-
ing to the integration markup.

Snippet Integration
Instructions for integrating a snippet into the user’s source
code are expressed using a lightweight markup embedded
within the snippet code. The SnipMatch markup is similar
to the markup used in Eclipse Templates [9], with several
additions. Eclipse Templates is a built-in feature in Eclipse
that allows users to create and insert code “templates”
(snippets). Like SnipMatch, it allows snippets to be inte-
grated into the source code by taking into account local
variables and adding missing import statements. Unlike
SnipMatch snippets, each Eclipse Template can only be
found through its single-word name. Parameters, helper

Figure 4. Integration markup

classes, and precondition checking are not supported. Fig-
ure 4 shows the snippet code associated with the search
pattern “read lines in <fileObject> into an array”. This snip-
pet includes two additions to the Eclipse Templates
markup: a search result argument (<fileObject>) and a help-
er class. In figure 4, ${fileObject} indicates where to insert
the argument for the <fileObject> parameter. The helper
class is delimited by ${helper} and ${endHelper}. Helper
classes are inserted in the current source file.
Helper classes are an optional feature that can make code
easier to read and reduce redundancy. For example, a pro-
grammer might prefer to read text from a file by calling a
method of a helper class instead of having the method code
appear inline. SnipMatch maintains a record of inserted
helper classes so that future snippet insertions will not cre-
ate duplicate classes.
Another addition to the Eclipse Templates markup is sup-
port for integration preconditions. The SnipMatch markup
includes the terms ${startPrecondition} and ${endPrecondi-
tion}. The code between these two terms is expected to be a
Java method named preconditionTest. Before the snippet is
shown to the user, the preconditionTest method is executed
in a secure sandbox that prevents access to other local pro-
cesses or communication with other machines. The return
value of the method is a Boolean that determines whether
or not the user’s code meets the necessary conditions for
the snippet to be integrated. This method accepts three ar-
guments with information about the source code file cur-
rently open in the IDE. The first argument is an instance of
the Eclipse JDT ASTParser class. This argument contains a
copy of the abstract syntax tree that can be traversed to
perform validations. A copy of the source code and the
current cursor position in the file are also included as ar-
guments – for example, so that a snippet creator can alter-
nately write a simple grep when string matching is suffi-
cient.
A graphical interface for specifying preconditions without
writing code could be created. For now, video tutorials on
the SnipMatch website and an interface for selecting
markup within the snippet editor provide usage instructions
and examples.

Benefits of Client-Server Search Processing
Allowing both the client and the server to process search
results has privacy and efficiency benefits. It mitigates pri-
vacy concerns, since source code is not sent from the client
to the server. Computation is distributed between the client
and server, with the client handling the computationally
expensive filtering and integration steps that are dependent
on the user’s code. Server results can be cached because
they are not specific to the user’s code.

Extensibility
Extending SnipMatch to support other imperative pro-
gramming languages is straightforward. In addition to Java,
we have tested SnipMatch with C++, PHP, and JavaScript.
The search algorithm and markup were not changed. The

Eclipse plug-in was modified to extract variable names and
types from these different ASTs. Type consistency check-
ing was disabled for the dynamically typed languages, but
search pattern parameters were still supported. Wrapper
classes have been created to simplify the process of extend-
ing the plug-in for third-party developers.

EVALUATION
We conducted three studies: a lab study, an analysis of us-
age logs following the public deployment of SnipMatch,
and interviews with programmers who have used Snip-
Match. The lab study was conducted to gather initial feed-
back and assess ease of use. We then made SnipMatch pub-
licly available and analyzed our logs to gain additional in-
sights and confirm external validity. Finally, we inter-
viewed five SnipMatch users to learn more about their
needs and search behaviors.

STUDY 1: EVALUATING SNIPMATCH IN THE LAB
Method
Two sets of 8 computer science students were recruited for
this study. Each participant was given two programming
tasks to complete. Participants in the first set were given a
brief (5-minute) SnipMatch tutorial and asked to use
SnipMatch instead of searching online for code snippets.
Participants in the second set were allowed to search online
and were not trained to use SnipMatch.
To avoid priming our participants with search keywords,
we explained the tasks by showing images. For the first
task, we showed two images. The first image depicted two
file folders, one full of files and the other empty. It was
described as the “before” image. The second image con-
tained the same two file folders with the all of the files now
in the other folder. Participants were asked to “write a pro-
gram to change the current state of the system to the second
image”. They were also shown that the folder that con-
tained the files in the first images existed on the computer
and was currently full of files. For the second task, we
showed one image, depicting a simple Graphical User In-
terface (GUI) for moving files from one folder to another.
This GUI included two text fields, labeled “Source folder”
and “Target folder”, and a button labeled “Move files”.
At the time of the study, SnipMatch included 29 snippets
and 55 search patterns. The snippets included all of the
functionality required to complete the tasks. The larger
number of search patterns indicates that some snippets were
discoverable through more than one search pattern. Ap-
proximately half of the snippets were created specifically
for this study. Drawing from textbooks and our experiences
teaching computer science, we attempted to include snip-
pets to support most standard file input and output opera-
tions and many basic GUI features. To narrow the scope of
our investigation to features specific to SnipMatch, we did
not include search results from external code repositories,
such as Google Code Search.
We anticipated that participants using SnipMatch would
need to perform a minimum of 7 snippet integrations: 2 for

the first task and 5 for the second. This calculation was
based on the assumption that participants had memorized
the method calls required to complete our tasks. It also as-
sumed that participants do not use SnipMatch for basic
programming statements (e.g. to create a for loop) and that
they prefer to copy and paste their code rather than use
SnipMatch repeatedly.
After completing the tasks, each participant using Snip-
Match filled out a questionnaire. We logged all SnipMatch
searches and the times required by the server and the client
to generate the results.
We recorded web search queries and web pages visited for
the participants who did not use SnipMatch. After both
tasks were completed, we asked these participants about
their programming behavior and experiences working with
code snippets found online.

Results
Programming with SnipMatch. All of our participants suc-
cessfully completed both tasks. On average, participants
completed the first task in 12 minutes (s.e. 1.5) and the
second in 28 minutes (s.e. 3.3). On average, participants
opened the SnipMatch search window 14.2 times (s.e. 2.2)
and selected a snippet to integrate 74% of the time. Partici-
pants performed many exploratory searches to test the ca-
pabilities of the system. Most also used SnipMatch to write
the loop required in the first task and to create the multiple
labels and textboxes for the second task. Verbs were popu-
lar search terms (copy, create, move, open, read).
Two participants mentioned that they did not need to re-
member syntax. One of these participants explained the
process of writing code using SnipMatch as “search to fig-
ure out how to do something, resulting in the creation of an
object, then search again, including this object, to continue
using it”. Several participants indicated that they were in-
terested in using SnipMatch to create private snippet re-
positories.
The mean rating for the question “I would use this tool on a
regular basis if it was available in my preferred develop-
ment environment” is particularly encouraging (µ=4.75 on
5 point Likert Scale). Participants also consistently gave
SnipMatch high marks as an efficient alternative to online
search (µ=4.75) and for ease of use (µ=4.5).
Programming without SnipMatch. All participants success-
fully completed the first (file i/o) task. Two participants
were unable to complete the second (GUI) task within an
hour. Including only data from tasks that were completed,
on average participants performed 14 online searches (10
min., 18 max.), 7 for each task. On average, participants
viewed 9 (5 min., 12 max.) non-search engine web pages
for the first task and 15 (8 min., 21 max.) for the second
task. Participants completed the first task in 25 minutes
(s.e. 2.5) and the second task in 37 minutes (s.e. 3.6). All
searches were performed on Google, with the exception of
four performed on Stack Overflow.

Discussion
Programming with SnipMatch. Study participants under-
stood how to use the tool and were able to use it effective-
ly. We were surprised that all participants successfully
completed both tasks. One participant had never pro-
grammed in Java and GUI programming can be difficult.
Most participants chose to use SnipMatch even when it
wasn’t necessary. For example, they used it to create the
loops and as an alternative to copying code from elsewhere
in the file.
One participant began the first task by creating String vari-
ables for the directory paths. With the variables in scope, he
then typed his first search query and the top search result
previewed the exact code required to complete the first step
for this task: creating an array of File objects for the files in
the directory identified in one of his Strings. Several partic-
ipants regularly took advantage of this context-sensitivity,
adopting a search-based code writing behavior in which
objects created from prior searches were included as key-
words in future searches.
Some results were not as accurate. Participants requested
that synonyms be added to the system. In particular, it was
suggested that words referring to the same abstract concept
in different programming languages might be interchange-
able (e.g. form and frame) for search purposes. Also, pre-
conceived ideas regarding command lines initially biased
some participants towards selecting snippets that included
string arguments instead of object arguments. This was
overcome once SnipMatch displayed results that included
local object variable names.
Participant feedback indicates that they were comfortable
including arguments within search queries. The inline snip-
pet preview provides code context for the arguments. We
observed several participants reading the preview as they
entered arguments.
The combination of natural language search results and
inline previews was sufficient for participants to understand
most snippets before integration. Although snippet integra-
tion can be undone with a single undo operation, this option
was rarely used.
The average server response time was 64ms (s.e. 2.0). The
Eclipse plug-in then spent 172ms (s.e. 15.9), on average,
customizing the server results. While the code is not opti-
mized, we believe that these numbers reflect the substantial
offloading of computationally expensive operations to the
client. Operations specific to the programmer’s existing
source code are performed client-side. This preserves pri-
vacy. With this approach, it is also possible to cache all
server responses. SnipMatch can be provided to a large
number of users at relatively low cost, similar to hosting
static HTML pages.
Programming without SnipMatch. Only one participant who
did not have access to SnipMatch completed the tasks in
less time than the slowest participant who used SnipMatch
(14 minutes, 19 minutes). These numbers are encouraging,

but this comparison has many limitations, including the
small number of snippets that were in the SnipMatch data-
base. While we expect that SnipMatch will continue to per-
form well as the number of snippets increases – since
search patterns are short, precise, and can be refined as
required – in this study, we are more interested in the dif-
ferences in search behaviors.
On average, participants performed exactly the same num-
ber of search queries (14). However, participants using
SnipMatch spent less time finding and integrating snippets.
Without SnipMatch, participants were not able to directly
select snippets from the search result list. Participants
opened and viewed many additional web pages (24 on av-
erage) listed in the search results. These web pages con-
tained Java examples, tutorials, and class documentation.
Most participants opened multiple tabs in the web browser
and flipped between tabs, comparing examples. When
asked about this behavior, participants explained that they
were checking for differences in dependencies, attempting
to verify that the code would operated as expected, and
determine which of the examples would be easiest to inte-
grate. With SnipMatch, participants often did not dwell on
the search results. They typically inserted snippets with
little hesitation, then experimented inline. We believe that
this was partially due to the smaller time commitment re-
quired to insert snippets with SnipMatch. Viewing the
snippet inline, participants could also benefit from the error
and warning highlighting provided by the IDE.
Without SnipMatch, participants frequently revisited search
result pages and selected alternate links rather that perform-
ing addition searches. After completing the tasks, 4 of our 8
participants indicated that they had difficulty coming up
with alternate wording that would “make a difference” to
the search results shown. They explained that adding addi-
tional words to their search queries often did not improve
the search results. SnipMatch users may be less likely to
experience this problem, since search queries are matched
against search patterns, rather than whole documents, for
in-order and unordered results.

Limitations to the Participant Recruitment Method
While we were careful to recruit participants from the same
population (computer science students at our university)
and using the same recruitment channel (our faculty mail-
ing list), the first set of participants was recruited before the
second set of participants. We initially intended only to
obtain first use data, then decided to expand the study. Be-
tween sets, participants had similar programming experi-
ence (first set: 3-10 years, second set: 2-10 years), age (20-
29, 21-26), and gender balance (1 female, 2 female). No
statistical tests were performed on the study results.

STUDY 2: DEPLOYMENT TO 93 PROGRAMMERS
Method
We made the SnipMatch plug-in publicly available to gain
additional insights and verify external validity. We were
specifically interested in better understanding usage in the

wild. Will programmers use SnipMatch? How often will
programmers use SnipMatch? We were also interested to
determine the types of search queries and snippets that are
most frequently used.
To obtain users, we created a webpage and embedded links
to share it on Facebook, Twitter, and Google+. We then
publicly announced SnipMatch on academic and industry
mailing lists. With user consent, we logged all search que-
ries and snippet insertions conducted during the first three
weeks of public deployment. Before the announcement, we
increased the number of SnipMatch snippets (72 snippets,
111 search patterns).

Results
93 programmers performed 516 searches: 345 resulted in
snippets being inserted into the existing source code, and
171 were cancelled. Ten programmers used SnipMatch on
more than four days. Four programmers used SnipMatch
during each of the three weeks. These programmers per-
formed 22-54 search queries. Five programmers created
snippets. Two of these programmers are among those who
have used SnipMatch on the largest number of days. Pro-
grammers created snippets for logging, class creation, ob-
ject and value comparison, and debugging tasks. To pre-
serve external validity, these results exclude usage by all
individuals associated with the research and development
of SnipMatch.

Discussion
Programmers are often eager to try new tools, but long-
term retention and integration into daily practice is substan-
tially less common. As a comparison point, Blueprint had a
1% user retention rate over a five-month span (where “re-
tention” was measured by any use of the tool five or more
months after initial installation) [3]. In the unlikely case
that SnipMatch can maintain even a moderate portion of its
current 4% (4/93) rate of weekly use, we will consider the
tool to be highly successful.
When we conducted phone interviews (described in the
following section) we were surprised to learn that at least
two of our regular users are professional programmers, and
that they are using SnipMatch in the workplace. Program-
mers with no direct interest in our work are regularly using
SnipMatch while creating commercial software. In particu-
lar, this professional interest demonstrates need for a snip-
pet search and insertion tool.
The snippets that print values and perform type conversions
were among the most frequently inserted, along with sever-
al of the user-created snippets. These popular print and
conversion snippets have search patterns with parameters.
Some of the frequently used user-created snippets also have
parameters and other features that require the snippet
markup. This indicates that programmers were able to teach
themselves to perform searches and use the markup.

STUDY 3: INTERVIEWS WITH PROFESSIONALS
Method
We sent an email to each of the 49 SnipMatch users who
registered for an account, requesting that they participate in
a 15-minute phone interview. 5 of our users, all profession-
al programmers, agreed to be interviewed (all male, two
living in the United States, one in Germany, and two in
India). Two of these individuals are among the four pro-
grammers who have used SnipMatch during each of the
three weeks of public deployment. We asked our inter-
viewees to describe situations when they had used Snip-
Match. We also examined their usage logs and spoke with
them about searches they had performed. Then we asked if
they had any difficulties using SnipMatch or ideas for im-
proving the tool.

Results and Discussion
Common Usage Scenarios. Our interviewees described two
common usage scenarios: shortcuts and quick reference.
All interviewees used SnipMatch as a typing shortcut. For
example, typing “convert”, “log”, or “println”, along with
arguments, in the search box. In addition to saving time by
reducing keystrokes, one programmer reported that this
helped him to “focus his attention”, “staying in flow with
the code”. Three programmers described specific situations
when they had inserted snippets that they could not have
written from memory, including design patterns and API
calls. One programmer explained that SnipMatch was par-
ticularly useful for his Android development, which he
found to require many “hard to remember structures”. An-
other mentioned writing snippets so that he would not need
to memorize how to call JDBC methods. These program-
mers did not memorize how to type the search queries to
insert these snippets – they trusted that they could find
them quickly.
SnipMatch complements libraries. Each call requires some
boilerplate code: minimally, importing a library and pass-
ing arguments. SnipMatch makes this easier, and shifts the
balance towards reuse over code duplication. Further, with
SnipMatch, programmers are able to help each other main-
tain good coding practices by curating the search results: if
a snippet duplicates code instead of importing it, users can
vote, flag, or comment to provide feedback.
Suggestions for Improvement. The programmers in India
both requested that we reduce the server response time. In
addition to promising to add a geographically proximate
server, we proposed to modify the client to cache most fre-
quently used snippets. This will also allow SnipMatch to
function offline.
One programmer requested that search results for recently
added snippets appear when the search box is empty. He
was concerned that users might otherwise not discover
them. For example, if a user had previously searched for
image manipulation snippets and hadn’t found any, he
thought they might not think to search again for some time.
We proposed to implement his suggestion and also to up-

date the client to display results from other snippet data-
bases (i.e. unsigned results) below SnipMatch results.
A programmer who uses SnipMatch regularly requested a
method for specifying Boolean expressions that could be
varied from within the search box. He indicated that he
didn’t want to have to create snippets for each combination.
We then told him about the nesting feature that we are
building, not yet released for public use. He thought it
would be sufficient for his purposes.

INSERTING MULTIPLE SNIPPETS WITH ONE QUERY
During the lab study, participants spent substantial time
manually integrating snippets. For example, most partici-
pants in both studies inserted one snippet to retrieve a list
of the files in a directory and a second to move files be-
tween directories. The participants then modified the snip-
pets to interact. To reduce the time and effort required to
integrate snippets, we designed an extension to SnipMatch
that allows programmers to insert multiple snippets with a
single search query (Figure 5).
For example, if file1 is a Java File object, SnipMatch can
recognize that the search query “move file1 to file1 parent
directory” can be satisfied by combining snippet results that
match the following search patterns: “move <x> to <y>” and
“<z> parent directory”. In this example, <x>, <y>, and <z>
represent search pattern parameters. To reduce ambiguity in
the search results, parentheses are inserted: “move file1 to
(file1 parent directory)”.
To implement this SnipMatch extension, we wrote a con-
text-free parser that interprets search pattern parameters as
nonterminal symbols and generates production rules from
search patterns. We also added a new, optional, field to
store the snippet return type. The left hand side of each
production rule is a nonterminal symbol representing the
return type of the snippet. This allows programmers to
specify, by writing in-order search queries, how multiple
snippets are to be combined.
Nested search results – search results that are produced by
this extension – are first ranked using the in-order result
ranking criteria. Next, the results are ranked by nesting
depth. Results that have fewer levels of nesting are ranked
higher. The ranked list of nested results appears below the
in-order results and above unordered results in the search
result list.
When performing a nested search, programmers will likely
not type the entire query at once. Instead, they might add
additional words to a shorter query as results appear. For
example, in an informal evaluation of this extension we

Figure 5. A search result with a nested snippet.

observed a programmer building up to the search result
“read file (lowercase <string>) into a string”. He first typed
“read file”, then remembered that his code could be storing
the file name in the wrong case, and decided to modify the
search query to “read file lower” to verify that SnipMatch
supports this nesting. While this extension has not been
formally evaluated, we believe that it is a useful starting
point for future investigations.

CONCLUSION
We have documented initial user experiences that demon-
strate how search patterns and the snippet markup can im-
prove a snippet search interface. Results from our lab study
and public deployment suggest that SnipMatch can be an
effective tool for certain tasks. Professional programmers,
found to be using SnipMatch in the wild, reported that
SnipMatch was useful as a memory aid and reduced con-
text switching.
Unlike prior search tools for curated snippets, results are
ranked and filtered based on both a snippet markup and
existing code in the IDE. SnipMatch users can include local
variables in search queries to pass them as arguments, cus-
tomizing curated snippets from the search box.
Installation instructions and a quick start tutorial are availa-
ble at http://snipmatch.org. We have released SnipMatch as
open source. The source can be downloaded from the
Eclipse Foundation’s code repository. Future work includes
two main activities: a longitudinal field study and extend-
ing the markup to support refactoring.

REFERENCES
1. Adar, E., Dontcheva, M., Fogarty, J., and Weld, D. S. Zoetrope: Inter-

acting with the Ephemeral Web. In Proc. UIST. pp. 239-48, 2008.
2. Bajracharya, S., T. Ngo, et al. Sourcerer: A Search Engine for Open

Source Code Supporting Structure-Based Search. In Companion to
OOPSLA: ACM SIGPLAN. pp. 681-82, 2006.

3. Brandt, J., Dontcheva, M., Weskamp, M., Klemmer, S.R. Example-
Centric Programming: Integrating Web Search into the Development
Environment. In Proc. CHI. pp. 513-522, 2010.

4. Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., Klemmer, S. R.
2009. Opportunistic Programming: Writing Code to Prototype, Ideate,
and Discover. IEEE Software, 26 (5), 18-24.

5. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.
Two Studies of Opportunistic Programming: Interleaving Web Forag-
ing, Learning, and Writing Code. In Proc. CHI. pp. 1589-1598, 2009.

6. Dontcheva, M., Drucker, S. M., Salesin, D., and Cohen, M. F. Rela-
tions, Cards, and Search Templates: User-Guided Web Data Integra-
tion and Layout. In Proc. UIST. pp. 61–70, 2007.

7. Dörner, C., Myers, B. A. EUKLAS, Plug-in for Eclipse IDE.
http://www.cs.cmu.edu/~euklas

8. Eclipse Quick Fix.
http://wiki.eclipse.org/FAQ_What_is_a_Quick_Fix%3F

9. Eclipse Templates.
http://www.ibm.com/developerworks/opensource/tutorials/os-eclipse-
code-templates/index.html

10. Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. The
Vocabulary Problem in Human-System Communication. In Commun-
cations of the ACM 30, 11 (Nov 1987), 964-971.

11. Google Code Search. http://www.google.com/codesearch
12. Gray, W. D. and D. A. Boehm-Davis. Milliseconds Matter: An Intro-

duction to Microstrategies and to Their Use in Describing and Predict-
ing Interactive Behavior. Journal of Experimental Psychology: Ap-
plied 6(4). pp. 322-35, 2000.

13. Hartmann, B., MacDougall, D., Brandt, J., and Klemmer, S. What
Would Other Programmers Do? Suggesting Solutions to Error Mes-
sages. In Proc. CHI. pp. 1019-1028, 2010.

14. Hearst, M. Search User Interfaces, Cambridge University Press,
Cambridge, UK, 2009.

15. Hoffmann, R., Fogarty, J., and Weld, D. S. Assieme: Finding and
Leveraging Implicit References in a Web Search Interface for Pro-
grammers. In Proc. UIST. pp. 13-22, 2007.

16. Holmes, R., Murphy, G. C. Using Structural Context to Recommend
Source Code Examples. In Proc. ICSE. pp. 117-125, 2005.

17. Jones, K. S. A Statistical Interpretation of Term Specificity and Its
Application in Retrieval. Journal of Documentation 28: 11, 1972.

18. Little, G. and Miller, R.C. Keyword Programming in Java. In Proc.
ASE. pp. 84-93, 2007.

19. Little, G. and Miller, R.C. Translating Keyword Commands into
Executable Code. In Proc. UIST. pp. 135-144, 2006.

20. Little, G., Lau, T.A., Cypher, A., Lin, J., Haber, E.M., Kandogan, E.
Koala: Capture, Share, Automate, Personalize Business Processes on
the Web. In Proc. CHI. pp. 943-946, 2007.

21. M. Kim, L. Bergman, T. Lau, and D. Notkin. An Ethnographic Study
of Copy and Paste Programming Practices in OOPL. In Proc. ESEM.
pp. 83–92 , 2004.

22. Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., Hartmann, B.
2011. Design Lessons from the Fastest Q&A Site in the West. In
Proc. CHI. pp. 2857-2866, 2011.

23. Mandelin, D., Xu, L., Bodík, R., and Kimelman, D. Jungloid Mining:
Helping to Navigate the API Jungle. In Proc. PLDI. pp. 48-61, 2005.

24. Medynskiy, Y., Dontcheva M., and Drucker, S. M. Exploring Web-
sites through Contextual Facets. In Proc. CHI. pp. 2013-22, 2009.

25. Miller, R. C., Chou, V. H., Bernstein, M., Little, G., Van Kleek, M.,
Karger, D., and Schraefel, M. Inky: A Sloppy Command Line for the
Web with Rich Visual Feedback. In Proc. UIST. pp. 131-140, 2008.

26. Morville, P., and Callender, J. Search Patterns: Design for Discovery.
O'Reilly Media, Inc., 2010.

27. Oney, S., Brandt, J. Codelets: Linking Interactive Documentation and
Example Code in the Editor. In Proc. CHI. 2012.

28. Reiss, S. P. Semantics-Based Code Search. ICSE 2009.
29. Sahavechaphan, N. and Claypool, K. XSnippet: Mining for Sample

Code. In Proc. of OOPSLA. pp. 413-30, 2006.
30. Stylos, J. and Myers, B. A. Mica: A Web-Search Tool for Finding

API Components and Examples. In Proc. VL/HCC. pp. 195-202,
2006.

31. Teevan, J., Cutrell, E., et al. Visual Snippets: Summarizing Web Pag-
es for Search and Revisitation. In Proc. CHI. pp. 2023-32, 2009.

32. Thummalapenta, S. and Xie, T. PARSEweb: A Programmer Assistant
for Reusing Open Source Code on the Web. In Proc. ASE. pp. 204-13,
2007.

33. Xie, T., Pei, J. MAPO:Mining API Usages from Open Source Reposi-
tories. In Proc. MSR. pp. 54-57, 2006.

34. Yeh, R. B., Paepcke, A., and Klemmer, S.R. Iterative Design and
Evaluation of an Event Architecture for Pen-and-Paper Interfaces. In
Proc. UIST. pp. 111-120, 2008.

