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ABSTRACT 
Interface designers often use screenshot images of example 
designs as building blocks for new designs. Since images are 
unstructured and hard to edit, designers typically reconstruct 
screenshots with vector graphics tools in order to reuse or edit 
parts of the design. Unfortunately, this reconstruction process 
is tedious and slow. We present Rewire, an interactive system 
that helps designers leverage example screenshots. Rewire au-
tomatically infers a vector representation of screenshots where 
each UI component is a separate object with editable shape 
and style properties. Based on this representation, the system 
provides three design assistance modes that help designers 
reuse or redraw components of the example design. The re-
sults from our quantitative and user evaluations demonstrate 
that Rewire can generate accurate vector representations of 
interface screenshots found in the wild and that design assis-
tance enables users to reconstruct and edit example designs 
more efficiently compared to a baseline design tool. . 

ACM Classification Keywords 
H.5.2. Information Interfaces: User Interfaces—prototyping

Author Keywords 
User interface design; wireframing; pixel-based reverse 
engineering. 

INTRODUCTION 
Examples play a critical role in the interface design process. 
Designers browse and curate example galleries for inspiration 
[13, 5], explore alternatives with examples [13, 11], and use 
examples as building blocks when developing new designs 
[16]. One common requirement across many of these scenar-
ios is the need to reuse or edit parts of an example design. For 
instance, a designer may want to edit the colors of UI compo-
nents to explore different palettes, change text labels based on 
the target application, or reuse part of an example interface in 
a new design. Performing such operations requires example 
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Layers Panel Properties Panel

Figure 1. Rewire’s Full Vector design assistance mode, in the Adobe 
Experience Design (XD) canvas. Designers activate the mode by right-
clicking on a screenshot. Designers can then edit the properties and lay-
ering of the vectorized output in XD’s Properties and Layers panels. 

designs to be represented in an editable way, predominantly as 
vector graphics where interface components are specified as 
objects with properties that define their shape and appearance. 

While vector representations enable reuse and editing, design-
ers can’t easily collect examples in this form because inter-
faces are often composed of images and shapes that combine 
in unexpected ways. Designers may also find examples in real 
interfaces where they cannot access a vector representation. 
Thus designers typically collect example designs in the form 
of screenshots (i.e., raster images). Most devices have short-
cuts to copy portions of the screen to an image, which makes 
it easy for designers to capture examples. At the same time, 
unlike vector graphics, screenshots are flat, unstructured, and 
hard to edit. As a result, when a designer wants to modify a 
design from an image, they need to reconstruct all or relevant 
parts of the content to produce an editable vector representa-
tion. This representation must be created by hand by drawing 
and specifying the properties of shapes through trial-and-error. 

Designers can use commercial vectorization tools, like Illustra-
tor’s ImageTrace, to ease this process. However, because these 
tools aim for visual fidelity, they represent their output with 
path objects representing visually distinct boundaries in an 
image. With paths, changing properties like rectangle corner 
radius requires editing many individual control points to mod-
ify the relevant boundaries. Changing font properties of text 
represented as a path is impossible without creating a text box. 
Thus, we aim to extract higher-level semantic objects (e.g., 
rectangles, text boxes) with properties of common UI compo-
nents (e.g., corner radius, font type). This paper explores how 
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Figure 2. Rewire provides three modes of design assistance. The first mode, Full Vector (a), creates vector objects for shapes in the image. Designers can 
highlight the automatically vectorized shapes by toggling the pink Highlights layer. Designers can then update and redesign the vectorized artboard, as 
shown on the right. The second mode, Smart-Snap (b), displays alignment and spacing guidelines to help designers align newly drawn shapes to shapes 
in the screenshot. The third mode, Wireframe (c), generates abstract wireframes of the screenshot, removing most visual details. 

to achieve this goal using image analysis techniques to uncover 
semantic structure and properties interface screenshots. 

Our system, Rewire, helps designers reuse and edit example 
screenshots. Rewire infers a semantic vector representation 
from a screenshot and provides three design assistance modes 
from these inferred vectors. Full Vector, shown in Figure 1 
and 2 (a), creates an artboard with a set of vector shapes 
inferred from a screenshot. This mode allows designers to 
quickly reconstruct or edit the example design. Smart-Snap, 
shown in Figure 2 (b), provides snapping guides that become 
active when drawing new shapes. These guides can assist 
designers in aligning new UI shapes with those in the exam-
ple design. Wireframe, shown in Figure 2 (c), displays the 
inferred vector shapes with a simple black outline. This mode 
helps designers reuse the layout of the example design while 
abstracting away visual details. 

Our work on Rewire includes three main contributions: 

1. An automatic method for extracting semantic vector objects 
from screenshots that combines low-level image processing 
with UI-specific reverse engineering techniques. 

2. Three new design assistance modes that leverage the ex-
tracted vector objects to help designers create new designs. 

3. Quantitative and qualitative evaluations demonstrating the 
accuracy of our pipeline and the benefits of our design 
assistance modes for reconstructing example designs. 

FORMATIVE INTERVIEWS & EXAMPLE SCENARIO 
We conducted formative interviews with 10 user interface de-
signers working at both small and large companies to help 
us uncover common use cases for Rewire. All designers fre-
quently used screenshots in their work. In one extreme case, 
one designer recreated an entire legacy interface design to use 
as a template, spending days drawing a complex vectorized 
design document from a screenshot. However, most designers 
said that they mostly recreate only parts of a design they need 
to change for making quick mockups. Sometimes they will 
simply cut, paste, and resize parts of screenshots into their de-
signs for quick prototyping, and then recreate UI shapes when 
moving to high-fidelity. Designers also mentioned recreating 
from screenshots when the original design assets were lost and 
when clients sent them interface screenshots to incorporate 
into their designs. 

From these observed use cases, we developed three design 
assistance modes that help designers leverage interface screen-
shots. We describe and motivate these modes in the context 
of an example scenario. In the scenario, Maria, a user experi-
ence designer, performs several design tasks using an existing 
vector-based design tool, Adobe Experience Design (XD), that 
has been augmented with the Rewire design assistance modes. 

Maria is creating a mockup for a shopping cart page. Her 
project manager sends her the screenshot shown in Figure 2 
and asks for a similar design with realistic bag images in place 



of the grey bag icons. To accomplish the task, Maria opens the 
screenshot in XD and activates Rewire’s Smart-Snap (Figure 2, 
(b)) mode. As she drags an image of a leather purse onto the 
canvas, blue snapping guides visualize how the image aligns 
with the interface shapes in the example design. These guides 
enable Maria to quickly align and resize four realistic bag 
images over the original bag icons, without having to carefully 
manipulate the size and position of each image. 

Maria’s next assignment is to modify the same shopping cart 
page to show a set of sample books rather than bags, with book 
titles and prices below each item. The project manager wants 
Maria to create several variations of the design with different 
color schemes. Instead of redrawing, retyping, and matching 
the properties of the screenshot by hand, Maria activates the 
Full Vector mode to automatically generate vectorized objects 
from the screenshot (Figure 2 (a), Full Vector). To see the 
generated objects, Maria enables Rewire’s highlighting feature 
as shown in Figure 2 ((a), Highlights). Rewire renders shapes 
(e.g., rectangles, circles, lines) in pink with white outlines, 
and text objects with white backslashes to indicate they are 
editable. Maria edits the text for each book and modifies the 
header and button colors to create several design variations. In 
this setting, the Full Vector mode helps Maria to quickly create 
designs using the components in the original screenshot. 

Finally, Maria’s manager sends her several screenshots of in-
spirational examples and asks her to show the client a range 
of potential designs based on these images. Since the goal is 
to present high-level ideas, Maria wants to show abstracted 
versions of the example designs that leave out unnecessary 
(and possibly distracting) design details like the specific fonts 
or icons. Maria drags the screenshots into XD and activates 
Rewire’s Wireframe mode, shown in Figure 2 (c), to automat-
ically create wireframe representations. Rewire draws these 
with a simple black outline with no additional styling. Maria 
then labels the components of the wireframe to highlight key 
parts of the app such as the header and shopping cart items. 

RELATED WORK 
Our work is inspired by prior research on data-driven design. 
Much of this work explores how examples can be used for 
design inspiration [16, 14, 7] or retargeted to different styles 
and layouts [15]. We advance this body of work by propos-
ing novel design assistance modes that help users leverage 
examples when creating new designs. Moreover, while many 
existing techniques analyze design examples with explicit 
structure (e.g., the DOM in web pages), our approach auto-
matically infers useful structure from flat screenshots of user 
interfaces, which are convenient for designers to collect. 

Our method for analyzing screenshots integrates Prefab [8, 
10], which reverse engineers user interface structure from im-
ages to modify those interfaces at run-time. Two other related 
systems are Sikuli Script [25], which automatically drives 
user interfaces based on their appearance, and Remaui [18], 
which generates Android application code from example im-
ages. In contrast to this previous work, we apply structure 
extraction techniques to aid the design (rather than control) of 
user interfaces, which imposes specific requirements on the 
analysis. In particular, Prefab, Sikuli and Remaui all aim to 

identify specific widget types (e.g., buttons, checkboxes) for 
automation or code generation, while Rewire detects primi-
tive shapes (e.g., rectangles, circles) and extracts their visual 
properties to produce an editable, vectorized version of the de-
sign. Finally, while most UI automation systems require users 
to select training examples of the relevant widgets, Rewire’s 
screenshot processing pipeline does not require designers to 
label any example interface elements. 

Deep learning offers a potential approach to extract structure 
from screenshots. The pix2code system [4] presents a convo-
lutional and recurrent neural network to infer interface code 
from screenshot images. The network represents the desired 
structure via a constrained domain-specific language (DSL) 
that encodes simple geometric relationships between a fixed 
set of UI components in addition to a small set of style prop-
erties, like color. Yet, this DSL is not designed to handle the 
much broader range of component types, appearances and 
arrangements that arise in many example screenshots. While 
adapting this network to output the type of structured repre-
sentation that Rewire requires is an interesting direction for 
future work, the pix2code approach in its current form is not 
directly applicable to our problem. 

Finally, as part of our screenshot processing pipeline, Rewire 
performs layout beautification to improve the inter-component 
alignment and visual consistency of the vectorized output. Xu 
et. al. introduce the term layout beautification for refining 
the alignment of sketch-based interfaces [24] and propose 
interactive techniques for visualizing, modifying and enforcing 
potential layout constraints. The work of O’Donovan et al. [19, 
20] uses an energy-based model to rate the quality of layouts 
based on design principles and applies machine learning to 
synthesize layouts for single page graphic designs. Inspired by 
these methods, we adopt a constrained optimization approach 
to satisfy alignment, distribution and consistency constraints. 

REWIRE ARCHITECTURE 
We assume the input to Rewire to be an image of an interface. 
Because interfaces consist of an array of geometric shapes and 
natural images, contain complex hierarchies, and contain a 
large set of properties that frequently interact, we focused on 
detecting and vectorizing four primitive shape types: rectan-
gles, circles, lines, and text. These shapes can be combined 
or used individually to represent most interface elements. The 
output of Rewire’s processing pipeline is a vectorized artboard 
containing editable shapes, as shown in Figure 3 (Output). 
These shapes contain styling (e.g. corner radius) and size prop-
erties. Rewire populates these shapes into a vector-drawing 
tool, where designers can edit, resize, or move them. 

To support the Smart-Snap, Full Vector and Wireframe design 
assistance modes, each vectorized shape is presented as 
demonstrated in Figure 2. The screenshot processing pipeline 
consists of three stages, as illustrated in Figure 3: 

Segmentation. First, we segment the screenshot into 
regions that represent distinct geometric elements by leverag-
ing existing low-level computer vision algorithms (Figure 3, 
Stage 1). We also classify segments into a predefined set of 
primitives (e.g. rectangles, lines, circles, text). 
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Figure 3. System overview of Rewire. The system input is a screenshot. Rewire segments shapes from the image and classifies them by primitive shape
type (1), extracts properties of segments to create vector shapes (2), and beautifies (i.e., aligns & normalizes) the resulting layout (3).

Vectorization. For each segment, we generate a corre-
sponding vector object by estimating the relevant shape
(e.g., size, position) and style (e.g., color, border thickness)
properties (Figure 3, Stage 2).

Beautification. Finally, we refine the properties of indi-
vidual vector objects via a global optimization that tries to
improve alignment and consistency across the entire artboard
(Figure 3, Stage 3).

Each design assistance mode uses the resulting vectorized out-
put in different ways. The Full Vector mode presents the fully
vectorized artboard to the user. The Wireframe mode removes
all the extracted style properties and only preserves the shape
of each object. Finally, the Smart-Snap mode creates snapping
guidelines based on the bounding box of each object but does
not add the actual objects to the artboard. We implemented all
of the design assistance modes as extensions to Adobe XD.

Segmentation
Rewire extracts primitive shapes from the input screenshot in
two steps. First, we detect all text regions via OCR, and then
we segment the remaining parts of the screenshot. Identify-
ing the text up front improves the quality of the subsequent
segmentation because it allows the algorithm to filter out ex-
traneous small segments that often arise within text regions.

For text detection, we use an existing OCR library called
Tesseract [22] to obtain bounding boxes that correspond to
potential text shapes.To optimize Tesseract’s performance, we
set the page segmentation mode to sparse text which tries to
find as much text as possible, in no particular order. With these
parameters, Tesseract outputs individual lines of text.

To filter out obvious false positives, we compute two geo-
metric properties, solidity and extent, for the pixels contained
within each text word. Prior work found these to be good at
discriminating between text and non-text regions [12]. The
system removes any text words with solidity greater than 0.3
and extent > 0.9 based on previous techniques [12, 17] and
experimentation with our example dataset. Finally, to create a
concise, easily editable set of text segments, we merge adja-
cent text lines that are close to each other and similar in color
using the Golden Ratio, Φ (1/1.618), a typography ratio that
relates font size, line height, and line width in an aesthetically

pleasing way. We merge lines if the vertical distance between
their bounding boxes is less than the Golden Ratio, Φ, times
the mean line height and the correlation between their color
histograms (measured via Pearson’s coefficient) is greater than
95%. We set these thresholds empirically and use them for all
of our results and experiments.

To segment the remaining parts of the screenshot, Rewire
decomposes the image into an over-complete set of candidate
segments and then iteratively merges and classifies segments to
obtain a final set of shapes. We compute candidate segments
by constructing an Ultra Metric Contour Map (UCM) [1],
which uses low-level image features to partition the image into
a set of closed regions. Since we have already detected text
regions, we remove UCM region boundaries that overlap with
any of the extracted text, and use the remaining segments as
our initial set of candidates.

Given the candidate segments, Rewire iteratively merges or
removes segments until it has attempted to merge all segments.
The first step is to put all candidate segments into a working
set S. For each segment s ∈ S, we determine whether it is
one of the primitive shapes (i.e. circle, rectangle, line) that
Rewire handles. To detect rectangles and lines, we count the
non-segment pixels within the axis-aligned bounding box of
s. If there are no non-segment pixels and the height or width
of the smaller dimension is less than 5px, then we classify
the s as a line. This threshold of 5px was set by a manual
exploration of common patterns in hand-created designs. If s
is not a line but the fraction of non-segment pixels is less than
90%, then we classify the it as a rectangle. Finally, if the s is
not a line or a rectangle, we compute a circle Hough transform
[3] to check whether it is circular.

If the segment s is classified as one of these shapes and its
larger bounding box dimension is bigger than 20px, then we
remove it from the working set and add it to the final set of
segments. Otherwise, we try to merge s with its adjacent
segments. If s is a line, we try to merge it with any adjacent co-
linear line segments. If s is not a line, we merge it with adjacent
segment t if they are a similar size (i.e., neither segment is
more than three times larger than the other) or both s and t
are small (i.e., have a width or height less than 5px). If s is
merged with any segments, we put the resulting segment back
in the working set S. If it is not merged with any segments, we
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Figure 4. Rewire extracts the baseline, line height, and font size of text 
shapes. 

add it to the final set of segments. Eventually, all segments are 
removed from the working set. 

When the working set is empty, we do one last clean-up pass. 
We remove any segments that are not primitive shapes and 
smaller than 25px in area. We discovered through experi-
mentation that these segments frequently correspond to noise 
produced by the UCM segmentation. For each rectangle, we 
also remove any lines or nested rectangles that are within 2px 
of the rectangle boundaries, since these extraneous segments 
typically correspond to styled rectangle borders. Finally, for 
every primitive shape, we remove neighboring segments that 
are less than one tenth the size of the shape because they are 
likely to be edge segments from border effects or shadowing 
around the detected segments. 

The final output of the segmentation is a set of segments 
labeled with a primitive shape type. Segments not classified 
as a primitive shape are left unlabeled. 

Vectorization 
Rewire generates vector objects from the set of segments. In 
this phase, text segments become text objects, line segments 
become lines, circle segments generate circles, and unlabeled 
and rectangle segments become rectangles. For each segment, 
the position of the its bounding box determines the position 
of the corresponding vector object. To ensure shapes are cor-
rectly layered, Rewire builds a partial hierarchy of interface 
shapes based on visual containment. Rewire does not support 
vectorizing icons or complex vector graphics. Based on for-
mative interviews, there are likely few cases where designers 
would want to reconstruct an entire logo from a screenshot. 
Instead, they typically want to abstract it away or replace it 
with a different icon or logo. Thus, our aim is to reconstruct 
whole UI components, which can be represented mainly with 
primitive shapes. Rewire computes the vector properties via 
the following segment-specific vectorization procedures. 

Text 
For each text segment, Rewire generates a text object and 
estimates the baseline, font size and color. For text segments 
containing more than one line of text, Rewire also estimates 
the line height property (see Figure 4). 

To estimate the baseline, Rewire converts the region of the 
original image inside the bounding box of the text area into 
an edge detected image which contains only white and black 
pixels on edge boundaries. Rewire analyzes a y-coordinate 
distribution of the white pixels in the region, and sets the 
baseline as the y-coordinate of the largest group with the 
highest y-coordinate. 

For text areas with more than one line, Rewire estimates the 
line height property by computing distances between adjacent 
baselines in a text area, and computing an average between 
adjacent baselines. 

To estimate the font size for text shapes, Rewire uses the 
bounding box height of the tallest text line in the text area, 
as shown in Figure 4, which directly converts into a fixed 
pixel value. Typography defines the font size as the distance 
between the highest ascender line (i.e., the capital letter L in 
Figure 4 and the lowest descender line (i.e., the bottom of the p 
in Figure 4 possible in a line of text. This means that Rewire’s 
font size estimate will be less accurate if the text line does not 
have ascender and descender lines. To address this, Rewire 
normalizes font size estimates during the beautification stage 
(Stage 3 in Figure 3), and snaps font size estimates upward 
toward similarly sized text shapes in the document. 

To extract text color, Rewire first finds the background color 
of the text by computing a histogram of all pixel colors found 
at the boundary of the text box, and merging them into groups 
of indistinguishable colors using the Delta-E metric [21]. The 
finds the foreground color by clustering pixels in the fore-
ground and computing a weighted average between the num-
ber of pixels in a group and the amount of contrast with the 
background, setting the font color to be the color of the group 
with the highest weighted average. 

Rectangles & Lines 
For rectangle segments, Rewire generates a rectangle object 
and estimates the background color, border color, border thick-
ness, and corner radius. To enable this, we created a new 
rectangle model in Prefab [8], a system for reverse engineer-
ing the pixels of graphical user interfaces. Prefab recognizes 
widget shapes in an image by fitting the pixels of an image to 
nine sub-regions: the interior (background), four borders, and 
four corners. For Rewire, we created a simplified six-region 
Prefab model that only includes a single corner region. This 
makes the computation more efficient but restricts the sys-
tem to generating rectangles with a single fixed corner radius 
(which is by far the common case). 

Prefab’s output is the size of each region, and the colors of 
the longest repeating patterns discovered in the border and 
background regions. From this, we infer the corner radius (i.e., 
width/height of the corner region) and border thickness (i.e., 
width/height of border regions). For background color and 
border color, if Prefab finds a single solid color, Rewire returns 
this color. If a solid color is not found, Rewire returns the most 
common color from this region. If the extracted border regions 
and background regions have the same color, Rewire collapses 
them and returns the background color and corner radius, and 
does not return a border. Note that we do not currently extract 
gradients or patterned fills for rectangles. 

Rewire uses a six-region Prefab model for vertical and hori-
zontal lines but allows the size of the side regions and corner 
regions to be zero. For lines, Rewire sets the background color 
and line thickness to the size and color of the background 
region of the Prefab model. 
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Circles 
For circles, Rewire finds the radius based on the dimensions 
of the segment bounding box. It extracts the background color 
by looking for the clustering pixels into foreground and back-
ground regions, and selecting the most common background 
color. Border color and thickness are not currently extracted 
for circles; however, we believe we could extract these simi-
larly to rectangles using a parametric Prefab model. 

Non-text, non-primitive segment 
Rewire generates a rectangle shape that aligns with the seg-
ment bounding box and clips out the corresponding screenshot 
pixels. While users cannot easily edit the contents of such clip-
ping regions, they can repurpose them by copying, scaling, and 
rearranging the clipped pixels. Figure 1 shows a lighthouse 
icon shape that can be rescaled and moved. 

Beautification 
The first two stages of the processing pipeline can introduce 
small misalignments and inaccuracies in the shape proper-
ties of generated vector objects. In particular, inexact edge 
detection (e.g., due to anti-aliasing or border effects) during 
segmentation can propagate to the vectorized objects. Such 
inaccuracies impact the quality of the design by creating mis-
alignment between objects or inconsistencies across related 
elements (e.g., text objects with slightly different font sizes). 
To address this problem, Rewire adjusts the shape properties 
of vector objects to improve alignment and consistency across 
the artboard. We formulate the problem as a constrained opti-
mization with the following soft and hard constraints. 

Soft Constraints 
We use soft constraints to discourage small differences in 
the size, alignment, spacing, and text properties of objects. 
For every pair of non-text vector objects, the system checks 
whether the widths or heights of the bounding boxes match 
within a small threshold and if so, adds a constraint penalizing 
the difference in the relevant dimension. For every pair of non-
text objects, we penalize small misalignments between the 
boundaries (top, bottom, left, right) and centers (horizontal, 
vertical) of the bounding boxes. Similarly, for every pair 
of text vector objects, we penalize misalignments along the 
vertical center and baseline axis, but do not add constraints 
for the other boundaries because it only makes sense to align 
text boxes along their baselines. For text/non-text pairs, the 
constraints are added to align the bottom of the bounding box 
of the non-text shape to the baseline of the text shape. 

In addition, for groups of three or more objects that are approx-
imately aligned along the same axis, we check for potential 
distribution relationships between the shapes (i.e., when the 
gaps between adjacent shapes are nearly uniform) and if so, 
add constraints that penalize discrepancies. Finally, for every 
pair of text objects, the system penalizes small differences 
between the baseline, line height or font size. The assumption 
is that the original designer manually aligned the shapes in the 
original design, so small misalignments have likely appeared 
due to small inaccuracies of the screenshot processing pipeline. 
We use a threshold of 2px to determine when to apply the non-
text (size, alignment, spacing) constraints and a 1px threshold 
for the text constraints. 

# Elements Rect. Circ. Line Text Other 

Mean 27.5 7.6 1.8 0.9 10.8 0.6 
Median 25.5 6 1 0 9.5 0 
Min 7 0 0 0 2 0 
Max 55 31 10 6 23 6 

Table 1. The summary statistics for the total and number of elements of 
each type per artboard included in our technical evaluation dataset. 

Hard Constraints 
To prevent the optimization from introducing new artifacts 
or transforming objects too drastically, we impose two types 
of hard constraints. First, we set a hard limit on how much 
any shape or text property can change during the optimization. 
We found a threshold of 2 pixels to work well. Second, we 
constrain every object to stay contained within the bounds of 
its parent object, if it has one. Unlike the soft constraints, these 
hard constraints are guaranteed not to conflict. 

Optimization 
We combine these constraints into a cost function which tries 
to maximize the number of soft constraints satisfied, and mini-
mize the distance the movement of shapes from their original 
locations. Given the set of soft and hard constraints and the 
cost function, we use Z3 [6] to obtain a solution. We use the 
Z3Py library’s optimize solver, which enables solving using a 
cost function and weighted soft constraints. 

TECHNICAL EVALUATION 
To evaluate the accuracy of our screenshot processing pipeline, 
and to understand the challenges in of using our system in the 
wild, we collected a dataset of interface designs in the form of 
vector drawings, ran our pipeline on screenshot images of each 
drawing, and compared the vectorized output from Rewire to 
the ground truth vector representation. Here, we describe our 
process for creating the ground truth dataset and the evaluation 
metrics we used to measure Rewire’s performance. 

Dataset 
To obtain a representative collection of user interface designs, 
we collected vector drawings from popular online design shar-
ing galleries, including dribble.com and designermill.com. 
We restricted our search to Adobe XD design files so that we 
could view all the drawings with a single tool. In addition, to 
keep the dataset self-consistent, we only considered mobile 
interface designs, which accounted for 39% of the design files. 
Finally, since Rewire is not yet designed to identify or segment 
natural images, we filtered out designs with large background 
images that cover more than 80% of the artboard. We also 
removed any documents that contained only UI kits, which 
are large collections of vectorized widgets that typically do 
not contain any interface designs. Using these rules, we down-
loaded (on June 20, 2017) a total of 88 XD files containing 
203 mobile design drawings across 6 websites. 

While these designs were representative, they did not have 
the appropriate vector structure to use directly as ground truth. 
Many designs include vector icons or logos that consist of 
many grouped geometric objects. Since the primary goal of 
Rewire’s pipeline is to reconstruct whole UI components rather 
than their visual parts, it did not make sense to treat individual 
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objects within icon or logo groups as part of the ground truth 
vector representation. However, the naming and granularity of 
such groups was not consistent, which made it hard to automat-
ically extract the ideal vector structure from each design. In 
addition, some designs included objects hidden behind other 
parts of the drawing. Such objects are likely artifacts of the 
design process designers left behind by accident. 

To resolve these issues, we randomly selected a single drawing 
from each of the 31 XD design files in our collection and 
manually edited its vector structure. Specifically, we removed 
any hidden objects and created specially named groups for sets 
of geometric primitives that form icons or logos. In all cases, 
icons and logos were easy to identify, and Figure 6 shows 
some examples (e.g. flower and car). After cleanup, we ended 
up with a dataset of 31 ground truth vector drawings, with a 
median of 25 vector objects (see Table 1 for statistics). 

Evaluation Method 
For the evaluation, we compare Rewire’s Full Vector output to 
the ground truth images. We evaluate the accuracy of Smart-
Snap or Wireframe modes separately because they use the 
same object boundaries as the Full Vector output. We com-
pute precision, recall, and f-score for two different evaluation 
metrics: type detection and property accuracy. 

For type detection, we first determine corresponding segments 
between the Rewire output and ground truth. To measure pre-
cision, we consider each Rewire object, compute the standard 
intersection-over-union (IoU) score for all ground truth objects, 
and select the one with the highest IoU as the match. If the 
types of the two matched objects are the same, we count a hit. 
Otherwise, we count a miss. To measure recall, we perform 
the inverse procedure starting with each ground truth object. 
This metric describes the accuracy of Rewire’s segmentation 
and object identification. 

To measure the property accuracy, we consider each matching 
pair of Rewire and ground truth objects that have the same type. 
We check if the objects overlap enough (90% for rectangles 
and circles, and any amount for lines and text), and for lines 
we check if they are colinear. For each pair that meets these 
requirements, test for matching property values using a 2px 
threshold for pixel-based properties and the Delta-E metric 
[21] for color similarity with a threshold of 1. We measure 
property accuracy as the number of properties within this 
threshold across the artboard, and report these results for Text 
and Geometry (i.e., rectangles, circles, lines). 

Results 
Figure 5 shows the distribution of precision, recall, and f-
scores for Text and Geometry for the type detection and prop-
erty accuracy metrics. The Text Types histogram shows we are 
able to identify most text shapes, and for both Geometry and 
Text objects, we successfully extract most properties. For Text 
Properties, 27/31 artboards have f-scores over 70%, and for 
Geometry Properties 17/24 artboards have f-scores over 70% 
accuracy. Note that the Geometry Properties histogram does 
not include the 7 artboards where Rewire did not match any 
of the Geometry Types well enough to extract their properties. 
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Figure 5. Histograms of Rewire’s f-score, precision, and accuracy on 
the dataset of real artboards collected from popular design sharing gal-
leries. The height of each bar represents the amount of artboards at that 
accuracy level. 

In general, type detection is harder than property extraction 
because it requires the initial segmentation to be correct. More-
over, identifying the type for Geometry objects is challenging 
for three key reasons. Natural images result in many extra seg-
ments, as shown by the low precision scores in the Geometry 
Types histogram. If we remove the 12 artboards with natural 
images from our dataset, 60% of the remaining artboards have 
Geometry Type f-scores above 50%. Additionally, small ob-
jects are sometimes mistaken for noise and filtered out by our 
segmentation. For example, 11 artboards in our dataset have 
standard mobile header bars with small components. Finally, 
many designs use alternate representations for interface com-
ponents. For example, designers sometimes use closed paths 
to draw rectangles and circles, while Rewire treats all geomet-
ric shapes as primitives. Layering relationships can also be 
ambiguous. For the designs in Figure 2, the grey background 
layer extends beneath the black header rectangle. Rewire ex-
tracts two adjacent rectangles. In many cases, Rewire’s output 
may be equivalent in terms of utility and editability. 

Extracting more accurate Geometry objects is the biggest op-
portunity for improvement in our processing pipeline. As we 
discuss later, there are many directions for future work to ad-
dress the current limitations. Yet, as we demonstrate in our 
user study, extracting even a subset of the interface shapes in 
a screenshot can have practical benefits for design tasks. 

USER STUDY 
To help us understand the benefits and limitations of Rewire’s 
design assistance modes, we conducted a user study with 
professional interface designers. We investigated the following 
research questions: 

RQ1: Do Rewire’s modes of design assistance improve the 
accuracy and efficiency of designers when creating a vector 
graphics design from an example screenshot? 

RQ2: What aspects of each design assistance mode do 
designers like and dislike? 
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(a) Original (b) Variations

(c) Design Specifications

√

√

Figure 6. The original screenshot (a), variations (b), and design specifi-
cations that designers recreated for our user study (c). 

For the study, we recruited 16 former or current user interface 
designers (6M, 9F) between the ages of 21 and 50, all of 
whom had at least one year of professional experience. All 
participants completed four design tasks over the course of 
1 hour using a version of Adobe Experience Design (XD) 
augmented with Rewire’s design assistance modes, shown in 
Figure 1, running on a MacBook Pro (OSX Sierra). While 
nine participants had little or no previous exposure to XD, they 
used very similar vector design tools like Bohemian Sketch 
and Axure in their daily work. The other six designers had at 
least one year of experience using XD. 

Procedure 
To evaluate RQ1, we used a within-subjects design with four 
conditions. Each condition included one task in which we 
asked participants to produce a vector representation of all 
of the UI components of an interface (see Figure 6). Rather 
than asking them to produce an exact vector replica of the 
screenshot, we made versions of the designs with different 
text (see Figure 6b) and gave them the target designs on paper. 
We also gave them printed task instructions for reference. To 
reduce the overall study time, we told designers to use the 
default font for all text, even if it didn’t match the screenshot. 
However, we did ask them to match other text properties (e.g., 
color, size) to preserve the overall appearance and layout of the 
design. Since we didn’t want them to vectorize icons, such as 
the lighthouse shown in Figure 6 (a), we instructed designers 
to use screenshots for all icons. Within XD, we provided the 
input screenshot in one artboard and asked designers to create 
the new design in an adjacent artboard. To facilitate tracing, 
we also added the screenshot to the working artboard as a 
background layer at 30% opacity. We asked participants to 
complete the task as quickly and accurately as possible and 
gave them a time limit of seven minutes. 

In the Baseline condition, the designer used standard XD tools. 
In the Smart-Snap and Full Vector conditions, the designers 
used the corresponding design assistance modes provided by 
Rewire. Finally, we also measured the performance of an 
“idealized” version of Rewire, by creating an Ideal Vector 
condition that provided a perfect vector representation of the 
screenshot. In this last condition, designers only needed to edit 
the text. Figure 1 shows the XD experience for the Full Vector 
condition. Designers were able to edit the properties and 
layering of the auto-generated vectors. The Smart-Snap and 
Screenshot Only modes started with no shapes in the layers 
panel, while the Ideal Vector contained the fully vectorized set 
of shapes. We did not to include the Wireframe mode as a test 
condition because, as noted earlier, designers described this 
mode as being most useful in communicating with clients. 

Before performing any tasks, we asked designers to recreate 
a small screenshot as a warm-up to familiarize themselves 
with the task instructions and baseline XD features. After 
the warm-up, participants performed the tasks under each 
condition. We fixed the task order and counterbalanced the 
order of conditions using a Latin square. Before each of the 
Rewire conditions (Smart-Snap and Full Vector), we described 
the relevant features of the design assistance mode and let the 
user experiment with them on a small screenshot. 

To evaluate RQ2, designers completed an open-ended survey 
after each task about what they liked and disliked about each 
condition. Additionally, they ranked all conditions in terms of 
preference and described contexts in which they would find 
the different modes most useful. 

Materials 
Since our study design counterbalanced the four conditions 
across the four tasks, it was important for the tasks to be 
equivalent in difficulty. We based the four tasks on an example 
interface from our dataset of online designs. We chose a 
design with a small number of elements to make the tasks 
manageable (Figure 6a), and with an average f-score of Rewire 
performance of 47% which was around the median of results 
for segmentation from our example dataset. 

Using this example as a reference, we then created three vari-
ations that had the same number and distribution of object 
types and rendered the corresponding screenshots (Figure6b). 
Finally, we verified that Rewire produced similar quality out-
put for all four input images (e.g., the number of incorrect 
properties or mis-classified objects is comparable). 

Design & Analysis: To measure accuracy, we exported each 
of the designer’s artboards to a screenshot and computed the 
pixel difference using the Delta-E metric [21]. We averaged 
this metric across all pixels for each screenshot, and assign 
each designer an error score. We selected this metric because 
we instructed designers to match the original designs as close 
visually as possible. We did not expect that they should or 
could recreate the exact shapes and structure of the original 
artboards. Thus, we manually verified that every participant 
created shapes as instructed. 

To analyze task durations, we first ran a repeated measures 
Anova to check for significant differences between the con-
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Figure 7. The left shows a box-plot of the the designers’ task comple-
tion times for Rewire (Smart-Snap and Full Vector) and baseline (Ideal 
Vector and Screenshot Only) conditions. The right shows amount of er-
ror in the designers’ output, as measured by the average of pixel color 
distance. 

ditions. Then, we ran pair-wise t-tests (paired two sample 
for means) across the six pairs of conditions. We then used 
the Holm-Bonferroni post-hoc method [23] to analyze the sig-
nificance of the paired conditions and did not reject any null 
hypothesis where the p-value was greater than this metric. We 
report the adjusted p-values in our results. We calculated the 
effect sizes using Cohen’s d. 

Results 
RQ1: Speed and Accuracy 
Figure 7 shows a box-plot of the designers’ times to com-
pletion. For the Full Vector condition, we found that de-
signers were able to complete the tasks 52 seconds on aver-
age faster than the Smart-Snap condition (t(11) = 3.26, p0 < 
0.008, d=0.91), and 65 seconds faster than the Screenshot 
Only condition (t(11) = 4.32, p0 < 0.002, d=1.07). For Smart-
Snap, designers completed the tasks 13 seconds faster than the 
Screenshot Only condition (t(11) = 2.20, p0 < 0.025, d=0.36). 
However, since they still had to recreate all of the shapes, 
the time savings were not as significant as the Full Vector 
condition. Additionally, since we stopped designers after 7 
minutes, Smart-Snap and Screenshot Only conditions had a 
significant ceiling effect. For the Full Vector condition, most 
participants completed the tasks within the allotted time. Thus, 
the differences may have been more dramatic had there been 
no ceiling effect. The Ideal Vector was 5.5 minutes faster 
than Smart-Snap (t(11) = 23.12, p0 < 2.81E-10, d=7.01), 4.67 
minutes faster than Full Vector (t(11) = 13.20, p0 < 8.70E-08, 
d=1.07), and 5.7 minutes faster than Screenshot Only (t(11) = 
28.13, p0 < 4.02E-11, d=8.22). This demonstrates that we can 
find significant time improvements by being able to produce 
a perfectly vectorized output, motivating us to improve the 
accuracy of Rewire’s Full Vector mode. 

Figure 7 shows box-plots of the designers’ error score, mea-
sured by the average pixel distance. This shows that Ideal 
Vector has the lowest inter-quartile range, followed by Full 
Vector. We found no significant differences between any of 
the pairs of conditions demonstrating that Rewire’s design 
assistance modes helped designers complete the tasks faster 
with no trade-offs in accuracy. 

RQ2: Designers Ranking and Feedback on Modes 
Figure 8 shows the designer’s rankings of the design assis-
tance modes from 1 (Most Preferred) to 4 (Least Preferred), 
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Figure 8. The designers’ overall rankings of design assistance mode from 
most to least preferred. 

showing that the Ideal Vector is the most preferred mode by 10 
designers, followed by Smart-Snap. Smart-Snap was most con-
sistently ranked second in the order, followed by Rewire’s Full 
Vector mode. The factors that most affected designers’ rank-
ings were perceived effort and time, which were mentioned by 
10 designers. However, the Full Vector mode required more 
fixes by designers so they perceived it as less accurate and 
more work than the Smart-Snap mode. 

Designers’ favorite part of having the ideal vector template was 
that it was more accurate, and required less effort. Designers 
liked not having to redraw shapes or manually align them (9 
designers). P10 mentioned "It was way easier! Now I can 
spend my time working on actual design.". However, designers 
did not always think that they would want it in every scenario. 
P13 said "It would be easier if I wanted to copy the exact 
screenshot. I usually change up colours, shapes, etc., so this 
wouldn’t be helpful in that case." 

The second most preferred mode was Rewire’s Smart-Snap. 
The designers’ favorite part Smart-Snap was that it made it 
easier and quicker to achieve a more accurate alignment (8 
designers). P8 said "I was able to get an idea of where exactly 
each element is properly placed with close to pixel perfect 
alignment." P5 said "The snapping guidelines are helpful and 
make for most accurate tracing of shapes - much better than 
doing them by hand." Five designers also mentioned Smart-
Snap’s help in drawing and matching the correct size for rect-
angles and other shapes. P11 said "I really like the snapping 
guidelines because it takes the guesswork out of shape sizes 
and where items are on the page." 

Smart-Snap seemed especially helpful for drawing rectangles 
and placing icon shapes, however, was less helpful for text. 
Snapping guidelines did not always appear in the correct place 
to help align new text boxes to the baselines of image text, 
so designers still had to align them manually. The snapping 
condition also did not help with matching any text or shape 
properties, so designers still found that part of the task to 
be challenging. Additionally, four designers mentioned that 
adding support for snapping to help obtain corner radii for rect-
angles would be useful. Currently, Smart-Snap only displays 
snapping guidelines for vertical and horizontal axes. 

Rewire’s Full Vector mode was most frequently ranked third. 
Designers mostly would not want to use it if the Ideal Vector 
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mode was available, since there were shapes and text that 
required fixes in the vectorized output. However, designers 
did like Full Vector mode’s auto-generated shapes and text (9 
designers), and felt that it required less effort overall than the 
screenshot-only mode (4 designers). P5 mentioned "It was a 
nice balance of providing elements and still allowing the user 
to make decisions." 

The most common dislike (6 designers) for Full Vector was 
having to manually fix issues in the auto-generated output. 
Rewire’s Full Vector mode was not perfect. It may have re-
quired more cognitive load to detect and find the issues. P10 
said "It requires more brain computing to determine how much 
more needs to be done. I would prefer to have it draw only 
the objects it is most confident about." P1 said "The fact that .. 
objects were not created accurately requires me to go through 
the auto-generated objects to make sure they are up to spec." 
Despite some designers’ dislike of the fixes required in this 
mode, three designers mentioned it was easier to make these 
fixes than recreating from scratch. 

Text shapes confused some designers because Rewire gener-
ates masked vector shapes instead of editable text boxes when 
it cannot detect text. We instructed them of this behavior in 
the warm-up, but several designers found this behavior con-
fusing, and tried to edit the text before realizing Rewire had 
not generated the text box. Also, four designers mentioned it 
was difficult to distinguish Rewire’s vector shapes from newly 
drawn shapes, despite the Rewire Highlights panel. Rewire’s 
vector shapes are currently indistinguishable from hand-drawn 
shapes in the XD canvas. Thus it is difficult for designers to 
check them for accuracy. One designer suggested adding an 
indicator to distinguish them in the layers panel. 

As Figure 8 shows, the Screenshot-Only mode was most com-
monly ranked last. None of the designers preferred it most. 
The designers most common dislike was the lack of precision 
and accuracy (7 designers). Designers mentioned needing to 
use more strategies (e.g, zooming, eyeballing, using guides) to 
ensure accurate alignment of shapes to the image, and disliked 
the precision in their output. Seven designers felt the task 
was more difficult, more work, and tedious compared to other 
modes. However, designers liked having more control and 
freedom with this mode. Five designers mentioned having 
more trust in its accuracy since it is their current method. 

After ranking the modes, we had the designers describe sce-
narios in which they might find each mode most useful. For 
Smart-Snap, the designers thought it would be most useful 
for tracing and getting exact alignment (P12, P13), and when 
creating new shapes similar in size or layout to the screenshot 
but with different designs (P5, P13). They also thought it 
would provide more control than the other modes. Design-
ers thought the Ideal Vector and Full Vector modes would be 
most useful for situations where the original assets were lost 
(P9, P13), having to match a UI or existing design language 
(P2, P3, P8), or in making quick mockups based an existing 
interface. However, accuracy was also important (P7, P11, 
P14). Designers felt that they would need to build trust in the 
auto-vectorized mode before integrating it into their design 
process. Screenshot-Only was only mentioned as useful when 

creating quick mockups if the designers did not care about 
accuracy or wanted a more loose recreation (P2, P8). 

DISCUSSION AND FUTURE WORK 
Rewire presents new tools for creating user interface designs 
based on example images. We see this work as an initial explo-
ration of intelligent design assistance, and we see opportunities 
to develop more sophisticated tools in the future. One area we 
could explore is additional forms of design assistance. While 
evaluating Rewire, we discovered that interface design docu-
ments frequently contain complex hierarchies and shapes with 
ambiguous representations. Our system could infer multiple 
hierarchies and shape types and allow the designer to select 
from these candidate representations. Also, because achieving 
a perfect vectorization is difficult, we could build a user-in-the-
loop system where designers can repair the vectorized output 
while training our system to improve its accuracy. 

Additionally, we may be able improve the accuracy of our 
vectorization pipeline by applying deep learning techniques. 
Training an end-to-end network would likely require either 
a lot of training data (e.g., collected from online galleries 
and cleaned), or using data augmentation. Another option is 
to fine tune a pre-trained segmentation network (e.g., [2]) to 
handle interface screenshots. We would also like to explore 
better detection of natural images from interface shapes. To do 
this, we could potentially train a network to distinguish these 
segments. Also, small interface shapes elements frequently get 
filtered by our segmentation algorithms. We plan to explore 
methods of enhancing these low level techniques in the future. 
We also plan to explore the extension of Prefab’s models [9] to 
discover more properties of shapes like shadows and gradients. 

Finally, we acknowledge that tools like Rewire may uninten-
tionally facilitate unsanctioned copying. Our formative work 
suggests that the tasks Rewire supports (creating derived de-
signs, recreating vector designs when original assets are lost) 
are common practice in the design community and not viewed 
as "stealing". However, researchers and practitioners should 
consider the ethical implications of tools like Rewire when 
adopting them into their practices. 

CONCLUSION 
In this paper, we presented Rewire, a system that automati-
cally infers a semantic vector-based representation of interface 
shapes from a pixel-based input screenshot. Rewire provides 
new forms of design assistance to ease the adaptation of ex-
ample screenshots directly in designs. If designers can save 
time from recreating interface elements, they would poten-
tially have more time to consider alternative designs, which 
would lead them to better final products [11]. We believe that 
systems like Rewire can enable us to explore new forms of 
intelligent design assistance enabling new possibilities in user 
interface design. 
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