
InterState: A Language and Environment
for Expressing Interface Behavior

Stephen Oney1,2, Brad Myers1
1Carnegie Mellon University
{soney, bam}@cs.cmu.edu

Joel Brandt2

2Adobe Research

joel.brandt@adobe.com

ABSTRACT
InterState is a new programming language and environment
that addresses the challenges of writing and reusing user
interface code. InterState represents interactive behaviors
clearly and concisely using a combination of novel forms of
state machines and constraints. It also introduces new lan-
guage features that allow programmers to easily modularize
and reuse behaviors. InterState uses a new visual notation
that allows programmers to better understand and navigate
their code. InterState also includes a live editor that imme-
diately updates the running application in response to
changes in the editor and vice versa to help programmers
understand the state of their program. Finally, InterState can
interface with code and widgets written in other languages,
for example to create a user interface in InterState that
communicates with a database. We evaluated the under-
standability of InterState’s programming primitives in a
comparative laboratory study. We found that participants
were twice as fast at understanding and modifying GUI
components when they were implemented with InterState
than when they were implemented in a conventional textual
event-callback style. We evaluated InterState’s scalability
with a series of benchmarks and example applications and
found that it can scale to implement complex behaviors
involving thousands of objects and constraints.

ACM Classification Keywords
D.2.6 Programming Environments

INTRODUCTION
User interface development is notoriously difficult [22].
The event-callback model used by nearly all widely-
deployed user interface frameworks tends to produce error-
prone “spaghetti” code by splitting the implementation of a
single behavior across many locations [21,26]. Researchers
and practitioners have tried to address this problem by
augmenting traditional programming languages with pro-
gramming paradigms more suitable for expressing user in-

terfaces. Two of the common difficulties these libraries
address are managing states—an interface’s status, which
often controls its appearance and behavior [1,33]—and ex-
pressing constraints—relationships among interface com-
ponents and underlying data models [21,26,30]. However, it
is still difficult to integrate constraints or state models into
imperative languages, in part because most development
tools are designed for presenting, navigating, and debug-
ging sequential code [22]. Further, the mechanisms for code
reuse and modularization in imperative languages often do
not match the needs of user interface programmers [18].

InterState Overview and Contributions
We created InterState with the insight that we can improve
user interface development tools by redesigning the lan-
guage and runtime features in concert. InterState contrib-
utes to the state of the art for user interface development
tools by introducing a novel computational model, a visual
notation, an inheritance mechanism, and a live editor for its
visual notation. Further, InterState demonstrates how de-
signing these features to work well together improves both
the individual components and the usability of the system
as an integrated whole.

Computational Model — The state of a user interface often
controls its appearance and behavior, which in turn are de-
fined by relationships among objects. In event-callback
code, it is difficult to manage, maintain, debug, and under-
stand these states and relationships [26,30]. InterState in-
troduces a computational model that addresses these chal-
lenges by including state machines and constraints as fun-
damental language constructs. This model expresses inter-
active behaviors as constraints that are enforced only in
particular states [30]. It also removes much of the boiler-

'black'fill

(div)
313
763y

x
prototypes

no_drag drag_lock

0
0

'black'
y
x mouse.x

'navy'
mouse.y

on('dblclick', this)

on('mouseup')
on('click')

on('mousedown', this)

drag

mouse.x

'blue'
mouse.y

Add Field

own

dom.div

draggable

Copies:

...
Figure 1: A basic InterState object, named draggable, which
implements draggable and drag lock behaviors. Properties that
control draggable’s display are represented as rows (e.g. x, y,
and fill). States and transitions are represented as columns (e.g.
no_drag and drag). An entry in a property’s row for a particular
state specifies a constraint that controls that property’s value in that
state. Here, while draggable is in the drag state, x and y will be
constrained to mouse.x and mouse.y respectively, meaning
draggable will follow the mouse.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

UIST '14, October 05 - 08 2014, Honolulu, HI, USA
Copyright 2014 ACM 978-1-4503-3069-5/14/10…$15.00.
http://dx.doi.org/10.1145/2642918.2647358

plate that is required to express constraints in other systems
[21,23,24,30], allowing programmers to express constraints
with simple equations—like those in spreadsheets—rather
than with a complex syntax.

Visual Notation — In most languages, understanding what
user events affect a particular property or, conversely, what
properties are affected by a particular user event, can be
difficult because event-callback code is usually spread
throughout multiple locations [26]. InterState introduces a
visual notation that concisely represents interactive behav-
iors as a table whose rows are properties and columns are
states. Combined with its computational model, the visual
notation allows programmers to see which events affect a
property by scanning the property’s row and which proper-
ties an event affects by looking at that event’s column. Fur-
ther, InterState’s visual notation helps overcome some well-
known issues with constraints, such as that they can be hard
to understand and control [22].

Behavior Reuse — Programmers often want to reuse, com-
bine, and inherit behaviors, but nearly every widely-used
programming language only allows properties and methods
to be inherited. InterState introduces a style of inheritance
that extends traditional prototype-instance inheritance
mechanisms to allow behaviors to be inherited. This is pos-
sible in InterState because its computational model defines
behaviors using state machines whose structure can be in-
herited. Because interactive behaviors are often combined,
InterState supports multiple inheritance by combining prop-
erty values across states. The table-based representation of
property values offers an intuitive way to resolve the ambi-
guities inherent in multiple inheritance in other systems:
potential conflicts use left-most precedence, which is readi-
ly visible due to the clear visual notation. InterState also
introduces a mechanism for templates that allows items in a
list of interactive components to be dynamically created and
updated to reflect changes in an underlying data model.

Live Development — Quick experimentation and parameter
tuning are crucial parts of the design process that are not
well supported by today’s programming environments
[5,6]. InterState introduces a live editor for its visual nota-
tion, where edits are immediately reflected in the running
application (runtime) and changes in runtime state and
property values are highlighted in the editor. This helps
bridge the “gulf of evaluation” in determining the effects of
a change [28], which has been shown to be a significant
barrier for experienced and new programmers [16] alike.

Complimentary Features — In addition to innovations in the
aforementioned areas, a significant contribution of Inter-
State is in designing these features and concepts to com-
plement each other in a cohesive programming environ-
ment. We start this paper with a motivating example and
sample applications before detailing the design of Inter-
State’s programming primitives and editor. We conclude
with an evaluation of InterState’s usability and scalability
for complex behaviors.

MOTIVATING EXAMPLE
Drag-lock is an example of a common interactive behavior.
Drag-lock is a standard accessibility feature that augments
“drag and drop” to allow users to double click an object and
drag it until they double click again. Suppose we want to
implement drag-lock on an object named draggable
which we will later reuse throughout a user interface. We
asked an expert programmer to implement this behavior in
JavaScript and refactored their code for clarity by adding
more descriptive variable names and removing unnecessary
lines. The resulting code is shown in Figure 2. At 20 lines,
it is compact but difficult to follow and even more difficult
to write correctly. When a user double clicks on
draggable to initiate a drag lock, five different snippets of
code are executed in an order that is difficult to predict
(mousedown, mu_listener, mousedown, mu_listener,
then dblclick). Some of these listeners also activate and
deactivate other listeners, making it even more difficult to
understand the snippet’s state at a given time.

Compare this with InterState’s implementation of the same
behavior, shown in Figure 1. With InterState, the execution
flow is clearly illustrated, as are the different possible val-
ues for x and y. Further, InterState makes it easy to follow
which state the draggable object is in by highlighting the
active state and relevant values, and by animating transi-
tions as they fire. In the evaluation described later in this
paper, we found that these features were effective in help-
ing programmers implement this behavior over twice as fast
with InterState than with JavaScript.

Further, suppose we want to extend this example to add
some common usability features that users expect: key-
board accessibility and a visual indication of the current
state. Specifically, in our example, pressing ESC should
terminate dragging, and the color of draggable should
change when it is “locked”. In JavaScript, adding keyboard
accessibility requires at least eight more lines of code, in-
cluding modifications to the previous code. In InterState, it
simply requires the addition of two new transitions (from
the drag and drag_lock states) and no modifications of
the existing states or transitions. In JavaScript, adding a

var isDragLocked = false,
 mm_listener = function(mm_event) {
 draggable.attr({ x: mm_ev.x, y: mm_ev.y });
 },
 mu_listener = function(mu_event) {
 removeEventListener("mousemove", mm_listener);
 removeEventListener("mouseup", mu_listener);
 };
draggable.mousedown(function(md_ev) {
 draggable.attr({ x: md_ev.x, y: md_ev.y });
 addEventListener("mousemove", mm_listener);
 addEventListener("mouseup", mu_listener);
}).dblclick(function(md_event) {
 if(isDragLocked) {
 removeEventListener("mousemove", mm_listener);
 } else {
 addEventListener ("mousemove", mm_listener);
 }
 isDragLocked = !isDragLocked;
});

Figure 2: A representative JavaScript snippet that implements
draggable and drag lock for an object named draggable.

visual state indication to draggable (e.g. so it is black by
default, blue while dragging, and navy when drag-locked)
requires five more carefully placed lines that, again, would
modify the original code. In InterState, this simply requires
specifying the color in three existing states (see Figure 1).
Finally, modifying the behavior to use a single click to es-
cape drag-lock rather than a double click, which is seeming-
ly trivial, requires nearly a complete rewrite of the Java-
Script code (to work with the original mouseup and
dblclick listeners) but only requires modifying one tran-
sition in InterState. Figure 1 shows the InterState code after
all of these modifications have been made, but the Java-
Script code would be about twice as long as Figure 2.

Now, suppose we want to reuse our drag-lock behavior in
other contexts (e.g. a drag-lock slider). In JavaScript, we
would need to carefully abstract and package this behavior
to be reusable in a way that does not interfere with other
behaviors. In InterState, this is supported by default since
other objects can simply inherit from draggable. Frame-
works that include a notion of state [1,3,30,36] would allow
drag-lock to be declared in a more natural way than plain
JavaScript. However, they lack InterState’s visual notation,
which makes understanding and debugging this behavior
relatively easy. Further, none of these other frameworks
address the challenge of behavior reuse.

Applications
To illustrate InterState’s expressiveness, we implemented a
number of example applications. We will briefly describe
three of these example applications and link to their work-
ing implementations. We will refer back to these examples
in subsequent sections.

Music Player & Playlist Editor http://istate.co/music
This music player includes a playlist manager that allows
users to create and edit playlists. It takes advantage of In-
terState’s ability to call JavaScript functions to play music
with the HTML5 audio API.

Breakout http://istate.co/breakout
Our version of the classic game “breakout” includes bonus-
es and power-ups. It also interfaces with Box2D, a third-
party physics engine, for collision detection and reactions.

Touchscreen Maps http://istate.co/touch_map
This application allows users to pan and zoom a map image
using touch and accelerometer events on touchscreen de-
vices. It illustrates InterState’s ability to express behaviors
using multiple input modalities.

INTERSTATE’S COMPUTATIONAL MODEL
InterState starts with a computational model that builds on
the idea of defining interactive behaviors using constraints
that apply in specific states, as used in ConstraintJS [30].
This combination of state machines and constraints allows
programmers to express interactive behaviors by tracking
UI state and declaring nuanced relationships between ele-
ments that depend on its state. Moving this computational
model from an imperative context (ConstraintJS in JavaS-

cript) to a declarative model (InterState) required two fun-
damental additions to increase its expressiveness.

First, property values can be set either on states (as usual)
but also on transitions, in which case they are evaluated
once when the transition executed, so the value stays fixed
even if dependencies change. In contrast, constraints on
states are continuously updated whenever dependencies
change while in that state. Setting on transitions allows pro-
grams to store the value of an expression at specific points
in time, for example, to calculate offsets for dragging an
object based on the initial mouse point and peg it to its last
location when it finishes dragging. Second, InterState care-
fully controls the order in which property values are evalu-
ated on transitions by determining the appropriate property
evaluation order when two separate transitions fire simulta-
neously based on internal dependencies.

Constraint Expressions
Constraints are a built-in primitive in InterState, which al-
lows many other InterState features to benefit from their
expressiveness; state machine transitions can use con-
straints to express mutable targets and events, objects can
dynamically vary their prototypes using constraints, and
constraints can express a dynamic list of items to be dis-
played with a given template. InterState allows program-
mers to express constraints with simple equations—like
those in spreadsheets—rather than with a complex syntax,
as required in previous work [21,23,24,30]. These equations
are still capable of concisely expressing many complex
constraints. For instance, constraints may contain indirec-
tion (the target object can itself be calculated by a con-
straint) [23,24,37] such as:

this.currentlyPlayingSong.title

It is also often useful to express operations on groups of
objects [31]. InterState includes a function called find for
making such queries with a chaining syntax inspired by
other query languages, including EET [8] and HANDS [31].
For example, in Breakout, players reach the next level by
destroying all of the blocks in the current level. This can be
expressed in a transition as:

find(blocks).in_state('alive').is_empty()

Every InterState object exists in a containment hierarchy.
References and scoping across a large containment hierar-
chy can be challenging, sometimes requiring specialized
query languages—e.g. XQuery or Sizzle (sizzlejs.com). In
other frameworks, referencing objects elsewhere in the con-
tainment hierarchy requires long chains of “parent” expres-
sions that are brittle with respect to changes to the pro-
gram’s structure [23]. InterState makes referencing fields in
constraints easier by naming every field, unlike the DOM
and other XML-based containment hierarchies. This allows
references to jump up the containment hierarchy by using
unique field names in a manner analogous to scoping rules
in textual languages. Although this requires an effort on the

part of the programmer to name every field and provide
unique names for important fields, it makes the resulting
code more readable and robust to structural changes.

State Machines
Including state machines as a built-in primitive allows In-
terState to handle the stateful nature of user interface be-
haviors [33]. While some previous systems have included
state as a separate primitive [1,3,17,29], including state as a
fundamental part of objects is crucial to InterState’s support
of behavior inheritance and reuse. This is because an ob-
ject’s state machines and fields define its behavior; so al-
lowing both to be inherited makes it possible for other ob-
jects to reuse its behaviors.

InterState objects contain one or more state machines and
any number of named properties, which map every state
and transition of its state machine to a value. This value can
be empty (represented as a grey circle in the editor) in
which case the property’s last value remains in use. Other-
wise, the value can be a constant or a constraint. Thus, a
property’s value in a state might depend upon which transi-
tion was fired to arrive at that state.

Starting State
As we will discuss in the “scalability” section below, scala-
bility is a multifaceted issue in programming tools. Most of
this paper focuses on ways that InterState can scale up to
express complex behaviors. However, it is also important to
consider how programming frameworks scale down to con-
cisely express simple behaviors. The difficulty of express-
ing a behavior should rise linearly with the complexity of
the behavior [22].

In InterState, creating static interfaces (no interactivity) is
straightforward. InterState objects start with one state to
match the simplicity of property sheets [34], which allow
programmers to easily see and modify an object’s settable
properties. However, whereas property sheets can only
specify the look of an application, InterState’s state ma-
chines scale to allow programmers to specify its behavior.

This is in contrast to previous systems that have integrated
state machines as a layer [27,36] where interface behavior
code goes inside of states. Consequently, these systems
scale down to static interfaces only as well as their underly-
ing imperative languages. Further, by relying on side-
effects to define behavior, these systems can still be subject
to the “spaghetti” code problem that makes it difficult to
determine how an interactive behavior works [26].

Combining State Machines
Behaviors often combine multiple state machines; an object
might, for instance, be draggable and selectable. In order to
avoid the state explosion problem [29] where programmers
would have to create combinatorial numbers of states (e.g.
draggingAndSelected, idleAndSelected, etc.), Inter-
State borrows two ideas from StateCharts [12]: concurrent
and nested states. As discussed below, objects can contain
multiple state machines that operate independently. When

multiple states are active, InterState uses left-to-right prece-
dence to choose which active value the properties should
use in the event of conflicts, a convention that is easy to
understand in InterState’s visual notation.

Transition Events
InterState’s event model is input agnostic. Any event ex-
posed by the runtime environment (usually the browser) can
be used. For instance, when the runtime is running on a
mobile touchscreen device, InterState transitions can be
triggered by touch and accelerometer events.

To allow programmers to concisely and declaratively ex-
press complex events, event targets can be computed by
dynamic constraints, e.g. on('click', currently-
PlayingSong). Such dynamic targets have been tried in
previous systems [8] but were hampered by performance
and implementation challenges. In InterState’s runtime im-
plementation, we optimized performance for dynamic event
targets by using JavaScript’s native event listener mecha-
nism, rather than distributing events in the runtime. This
required modifying our constraint solver, which is normally
lazy (pull-based), so that constraints used to calculate the
active event listeners are updated whenever an event’s tar-
get is changed (push-based).

Constraint Events
Another innovative way that InterState allows events to be
dynamically calculated is to support events that refer to
changes in constraint values. For instance, in our Breakout
example, the player should lose a life when the ball goes
past the paddle. In imperative languages, this usually re-
quires passing property changes through a setter method,
which then triggers the corresponding state change. Inter-
State simplifies this by introducing constraint events—
Boolean expressions like (ball.cy > paddle.y)—that
fire any time the value of the expression switches from
false to true. While constraint events have technically
been possible in other constraint systems [21], InterState
reduces the syntactic burden of expressing them by allow-
ing constraint events to be expressed using the same syntax
as constraints. Further, the efficient eager evaluation mech-
anism discussed in the previous section makes these con-
straint events practical.

Manipulating Visual Objects
InterState is output-agnostic and can be made to work with
any output supporting a structured graphics model (some-
times called a “retained object model”). We have fully im-
plemented output mechanisms for HTML DOM objects and
Scalable Vector Graphics (SVG) objects. We have also cre-
ated a prototype to confirm the feasibility of using WebGL
as an output mechanism for creating 3D interfaces.

New outputs can be added by writing a JavaScript wrapper
that maps changes in InterState objects’ fields and contain-
ment hierarchy to operations in the output mechanism. De-
pending on the specific output mechanism, additional code
might also be needed to detect input events. In total, our

wrapper for the SVG output mechanism only requires about
300 lines of JavaScript.

To make an SVG graphical object appear on the screen in
InterState, programmers can make that object inherit from
one of seven types of SVG objects: circle, ellipse,
image, rectangle, text, group, and path. (Program-
ming with HTML DOM or other output models works simi-
larly.) All of these prototypes provide default values for
their display properties (for example, rectangle has a
width attribute with a default value of 150 and image has
a src attribute with a default URI that points to the Inter-
State logo). InterState also includes attributes that allow
programmers to specify how display properties should ani-
mate between values, using CSS transitions. Finally, to ena-
ble a dynamic DOM hierarchy despite the static containment
hierarchy of InterState objects, InterState DOM objects in-
clude a property that allows programmers to express a
node’s DOM children as a dynamic constraint.

BEHAVIOR REUSE IN INTERSTATE
User interfaces often re-use and combine behaviors. Inter-
State supports this by introducing an inheritance mecha-
nism that allows behaviors to be re-used as easily as fields
and methods are in traditional inheritance.

Inheritance
Other toolkits have achieved behavior inheritance by re-
quiring that programmers create separate interactor objects
that describe specific built-in behaviors and can be attached
to graphical objects [15,23,24]. Rather than requiring such
specialized mechanisms, InterState’s inheritance model
extends traditional prototype-instance inheritance [23] by
adding several features to support behavior inheritance.

First, when one InterState object inherits from another, it
also inherits an instance of that object’s state machine. For
example, in Figure 4, my_selectable_draggable gets
an instance of the state machines for both selectable and
draggable. The fact that an instance of the state machine
is inherited, rather than the state machine itself, is im-
portant; we usually do not want all of the objects that inher-
it from a particular object to be in the same state. For ex-
ample, we do not want every object that inherits from
draggable to enter the dragging state when one of them
does. When the structure (not current state) of a prototype’s
state machine is changed, that change is instantly reflected
in the structure of all objects that inherit from it. This al-
lows programmers to quickly modify the behavior of ob-
jects in their interface to explore behavior variations. For
example, in an interface with a number of draggable ele-
ments, drag-lock could be implemented for every element
by modifying the definition of one “draggable” prototype.

Second, rather than inheriting a property’s value, InterState
inherits the property’s constraint. Further, the values of the
of references in the constraint expression are computed
based on the context of the instance, not the prototype. By
inheriting the constraint’s definition and redetermining ref-

erents, InterState allows prototypes to define behaviors that
reference the state and property values of the objects that
inherit from them. This is illustrated in Figure 3, where
my_square inherits the definition of height, rather than
its value, and the value computed for my_square.height
depends on my_square.width, not square.width. Am-
ulet and Garnet included a similar mechanism [23,24], but
using a more verbose syntax.

Third, unlike most prototype-instance inheritance models,
InterState allows multiple inheritance. A handful of other
prototype-instance frameworks have included multiple in-
heritance, but only for fields [24,35]. In InterState, multiple
inheritance is crucial because interface components often
combine multiple inherited behaviors. InterState objects
may inherit from any number of other objects. InterState
then combines inherited values across states. If an object’s
property is not defined for a state but it is in one of the ob-
ject’s prototypes, that prototype’s definition is used for the
state. This allows multiple behaviors to control the same
property simultaneously. For example, in Figure 4,
selectable and draggable define color.
my_selectable_draggable combines the definitions of
both of these prototypes. In the selected state, it will be
'blue'; otherwise, it will be 'black' or 'red', depend-
ing on the dragging state. For conflicting values, the left-
most value is used; a convention that is easy to control and
understand in concert with the visual notation.

Previous multiple inheritance frameworks have been ham-
pered by the “diamond problem”, which occurs when ob-
jects B and C both inherit from A and object D inherits from
both B and C, leading previous systems to inherit A twice
[19]. InterState addresses the diamond problem by detecting
duplicate prototypes and only inheriting them once. If there
are conflicts among prototypes (i.e. two prototypes set the
same field for the same state), InterState gives precedence
to the first (leftmost) prototype.

my_square

(square)
20
20height

width
prototypes

20
square

width
10+5

own square

square

undefined
15
15height

width
prototypes

width
10+5

Copies:

Add Field

ownCopies:

Add Field

Figure 3: InterState uses a prototype-instance inheritance model
with multiple inheritance. Prototypes are simply specified in the
prototypes property. Here, my_square inherits from square.
Because my_square does not define a value for height, it inherits
the definition of square.height, as indicated by the greyed out
text in the columns on the right. Note that my_square inherits the
definition of height, not the value. Thus, its width property evalu-
ates to a different value (20) than it does in square (15).

Finally, prototypes, like every other property, can have
different values in different states, and can even be comput-
ed by constraints, allowing the prototypes of any given ob-
ject to depend on its current state. This dynamic inheritance
provides a declarative way for interface elements to modify
their behavior based on the interface state [35]. For in-
stance, programmers can declaratively change an SVG ob-
ject from a rectangle to a circle by changing its prototype,
rather than imperatively removing and creating objects.

Copies and Templates
User interfaces often contain lists of items that behave simi-
larly. Programmers should not have to declare a display for
every item in such a list, because it is too tedious and be-
cause that list of items may be computed at runtime. In im-
perative languages, this functionality has been implemented
as list views in data-binding libraries, or as special groups
[23] that allow programmers to specify a template display
and to specify the number of instances they want. Most
template mechanisms, however, require separate template
objects and a special template syntax [30]. InterState’s tem-
plate mechanism improves on this by enabling the features
of templates without requiring a special syntax or special
form for template objects.

InterState adds an optional copies field to all objects. Like
other fields, copies can be dynamic and can reference
other fields or JavaScript objects. When copies is set to an
array or a number, its parent object then creates an array of
objects. The editor visually signals this by displaying a
stack under the object’s display (see Figure 5). For every
copy, InterState sets two properties: my_copy, which car-
ries the corresponding value from the copies array (e.g.
'Jane', 'Sue') and copy_num, which carries an item’s
index (e.g. 0, 1). When the value of copies changes (dy-
namically due to a constraint or by edits at design time), the
list is efficiently updated with respect to added, moved, and
removed items instead of recreating the entire list.

In our music player application, for instance, the list of
playlists is stored in the playlists property. A playlist
display will be automatically created for every item in
playlists by setting copies of playlistsView. We
then create a list of songs per-playlist by setting copies of
currentPlaylistView to currentPlaylist.songs.

When the user modifies either the list of songs in a playlist
or the list of playlists themselves, new elements are added
and removed automatically.

This feature integrates well with InterState’s dynamic
inheritance model, since copies can vary their displays. For
instance, a directory viewer application might set copies
of itemView to the current directory’s contents. Copies
could inherit from folderView if my_copy is a folder or
from fileView if it is a file. This example could create a
recursive tree structure by making itemView a child of
folderView with a copy for every item in its folder.

INTERSTATE VISUAL NOTATION AND EDITOR
In event-callback code, property values can be modified in
any callback [21,26]. InterState’s computational model, by
contrast, allows property values to change in two ways:
either a constraint in that property is recomputed (e.g.
mouse.x changes when the mouse moves) or the property’s
specified value changes (e.g. a state change or the pro-
grammer edits the property’s value). This design trades
some flexibility—losing the ability to set properties any-
where—for readability by ensuring all of a property’s pos-
sible values are visible in its row.

To achieve a tabular layout with every state and transition
represented in a column, InterState’s visual notation “flat-
tens” its state machines to allocate horizontal space for all
local and inherited states. The trapezoidal shape of states is
designed to allocate a column for every transition, horizon-
tally centered where the transition’s arrow begins.

InterState Live Editor
Previous research has shown how live programming can
improve the experience of both novice and professional
programmers [11,20]. The declarative nature of InterState’s
computational model reduces many of the technical chal-
lenges of creating live editors in imperative languages [6].

InterState’s editor is displayed in a separate window that

person_display [0]
['Jane', 'Sue']Copies:

copy_num

Add Field

my_copy
1

'Jane'
copy 1 of 2

copy_num
'Sue'

0
...

Figure 5: An object with multiple copies;
copies is set to ['Jane', 'Sue'].
Every copy has two properties: my_copy,
which is set to that copy's item (here, ei-
ther 'Jane' or 'Sue') and copy_num,
which is set to that copy's index. Here, we
are looking at the first copy.

Figure 4: An object that inher-
its from both draggable and
selectable behaviors. Note
that the definitions for the
color property are inherited
from draggable ('red') and
selectable ('blue').

prototypes undefined
0
0
'black'fill

y
x

not_dragging dragging

on('mousedown', this)
on('mouseup')

owndraggable

0
0

'black'

mouse.x
mouse.y
'red'

x
y

undefined
fill
prototypes

'blue'

not_selected selected

on('mouseover', this)
on('mouseout', this)

ownselectable

'blue'

prototypes

0

[(selectable),(drag..

0x
y

fill 'blue'

not_dragging

on('mousedown', this)
on('mouseup')

draggablemy_selectable_draggable

0
0

'black'
x
y

not_selected selected

on('mouseover', this)
on('mouseout', this)

selectable

'blue'
[selectable,drag

own

dragging

mouse.x
mouse.y

'red'

Copies:

Add Field

Copies:

Add Field

Copies:

Add Field

communicates with the runtime. The editor displays current
field values and highlights and animates state changes to
inform programmers of the current state of their program.
When developing non-desktop applications (e.g. for a
touchscreen phone or tablet), the editor can alternatively be
displayed on a separate computer connected via a network.
This allows the programmer to interact with their running
program while editing its behavior.

Space Efficiency and Navigation
Navigability is an important consideration in live editors
[6]. Programmers should be able to navigate between ob-
jects in the editor and their representations in the runtime.
InterState’s editor was built to enable quick exploration and
navigation. The runtime allows users to inspect objects in
the runtime display pane to open those objects in the editor
window. Conversely, objects in the runtime display pane
are highlighted whenever the mouse is hovered over the
corresponding representation in the editor. When properties
reference other objects in the containment hierarchy, pro-
grammers can click the name of the object to navigate to it.

By default, the InterState editor displays a single object at a
time. To show every field immediately referenceable by the
current object, the editor displays the names of every parent
in the containment hierarchy, along with field names and a
compact summary of their current value. The editor also
allows programmers to “pin” objects so their display stays
on the screen so they can be referenced while editing anoth-
er object. InterState’s editor includes an inline text editor
useful for quickly editing of short constraint values and a
full multi-line text editor useful for editing longer values,
like method definitions.

Error Reporting & Debugging
One of the barriers to the adoption of constraint systems has
been the difficulty of understanding and fixing bugs in con-
straint specifications [22]. When there is a bug in a con-
straint method, many constraint systems will halt program
execution and present a cryptic error message [23,24].

InterState’s runtime was designed to enable programmers to
always have a running application, like in spreadsheet pro-
gramming, where constraint errors do not halt updates of
other constraints [7,22]. InterState achieves this by “localiz-
ing” errors: constraints with errors only prevent the parts of
the program from running that depend on those constraints.
In the editor, errors are displayed next to the problematic
constraint expression (see Figure 6).

Constraints are also challenging to debug in imperative
languages because of their declarative nature [22]. Break-
points in imperative languages are of limited use because
they can freeze the program while the constraint solver is in
an inconsistent state (i.e. in the middle of code maintaining

a dependency). InterState’s editor makes constraint debug-
ging easier by allowing programmers to always see the cur-
rent values calculated by constraints, and to set breakpoints
that halt its constraint solver in a consistent state just before
a constraint is reevaluated. Breakpoints can also be set on
transitions or states so programmers can see what relation-
ships are being maintained at any point in their program.

EVALUATIONS OF INTERSTATE
To understand the efficacy and limitations of InterState, we
evaluated it in three ways. First, implementing the example
applications described earlier allowed us to evaluate the
expressiveness of InterState’s model. Second, a compara-
tive laboratory study helped us understand InterState’s
learnability. Finally, performance benchmarks measured
our runtime’s scalability.

Comparative Laboratory Study
Given the design goals of InterState, we hypothesized that
programmers could more easily understand and modify user
interface code with InterState than in event-callback code.

Method
To evaluate this hypothesis, we conducted a comparative
laboratory study with 20 experienced programmers (ages
19-41). There were two different study tasks and two sys-
tems with which to implement them (regular JavaScript or
InterState), all counterbalanced to control for learning ef-
fects and differences in task difficulty. Participants were
given the same task description regardless of implementa-
tion language. For each behavior, we asked participants to
make modifications to evaluate their ability to understand
the implemented behavior and express a new behavior.

For one behavior, participants were given code for a stand-
ard drag and drop behavior and were asked to implement
the drag-lock behavior described earlier. For the other be-
havior, participants were given code for an image carousel
that displayed a large “featured” image and a series of
thumbnails. The featured image changes when a thumbnail
is clicked or auto-advanced after a timeout. We asked par-
ticipants to change display features of the thumbnails, the
auto-advance interval, and to add a progress bar below the
featured thumbnail to indicate the auto-advance interval.

To make our comparison as fair as possible, we started with
third-party code for the JavaScript implementations and
simplified them by reducing boilerplate and adding descrip-
tive variable names that were consistent with those used in
the InterState implementations. We also used a “live” Ja-
vaScript editor (JSBin) that immediately re-evaluates Ja-
vaScript snippets when their source changes. Finally, par-
ticipants were given tutorials and reference sheets for Ja-
vaScript and InterState.

Results
Participants were able to implement the drag lock task sig-
nificantly faster with InterState—taking less than half the
time (JavaScript: 19.5±13.6 min, InterState: 8.0±6.8 min,
two-tailed heteroscedastic Student’s t-test p < 0.05). Al-

undefinedx
(square)prototypes

other_shape.x+5

Error: Could not find field 'other_shape'

Figure 6: Syntax and runtime errors are highlighted in the editor but
do not prevent the program from running.

though relatively few lines of code were required, reasoning
about callbacks’ timing in the JavaScript task proved chal-
lenging for many users, and many participants used console
logs to help them understand their interface’s state.

Participants also completed the image carousel task signifi-
cantly faster with InterState, again in about half the time
(JavaScript: 28.3±7.6 min, InterState: 14.7±5.5 min, p <
0.01). For this task, participants added a timer indicator.
Participants in both implementations used one of two strat-
egies for this: either creating an indicator for each thumb-
nail or creating one indicator that follows the featured
thumbnail. Both implementations already had a property
that tracked the number of milliseconds before the featured
image auto-advanced, which the programmers could utilize.
Most JavaScript participants missed this variable while
most InterState participants found it, apparently by observ-
ing how its value changed over time.

Discussion
Most participants felt comfortable with InterState’s visual
notation, calling it “intuitive” and “clean”. Nearly every
user cited InterState’s ability to display the current applica-
tion state and live property values as one of the most useful
aspects of the editor. This helped many users quickly debug
and deduce the meaning and roles of properties.

Our evaluation also pointed to several ways to improve
InterState, some of which are already reflected in the design
described above. For example, we added the ability to jump
from an on-screen object in the runtime to its representation
in the editor as a result of observing the difficulty several
participants had finding objects. Additionally, the ability to
“pin” objects in the editor was suggested by a participant.
Both of these features were added after this study.

The most common mistakes made in InterState were the
result of a few conceptual barriers that we plan on improv-
ing. For example, some participants were not sure whether
edits to an object with multiple copies changed every copy
or just one, a distinction that the editor could make clearer.
Some participants also had difficulty reasoning about the
interaction between state machines in different copies. In
the image carousel example, when the user clicks a thumb-
nail, that thumbnail should become selected and the previ-
ously selected thumbnail should become deselected. This is
a breakdown of the visibility principle—by only showing
one copy at a time, InterState’s representation of state ma-
chines does not make it clear how user events can affect
multiple state machines.

Scalability
We designed InterState to be “scalable” in three senses of
the word. Application scalability refers to InterState’s abil-
ity to scale to implement even complex GUIS. Performance
scalability refers to InterState’s ability to deal with large
numbers of components. Editor scalability concerns the
ability of the InterState editor to keep source code readable,

understandable, and navigable even as applications become
more complex.

Application Complexity
To scale in terms of application complexity, InterState in-
cludes a number of features. First, behavior inheritance and
templating enable code re-use, which makes writing com-
plex applications more practical.

Second, InterState includes a number of pre-built widgets,
such as sliders and radio buttons that programmers can easi-
ly include in their application. Unlike many widget librar-
ies, however, these widgets are not black-boxes, but can be
inspected and modified if users want variations.

Finally, many applications require complexity in back-end
code. For instance, a mailbox application might need to
communicate with a server over IMAP to retrieve e-mail
messages. Thus, InterState includes mechanisms for com-
municating with back-end code written in other languages,
allowing programmers to connect a front-end written in
InterState with a back-end written in another language.

Performance
We conducted a series of performance tests to evaluate In-
terState’s ability to scale for behaviors involving large
numbers of objects. These tests were performed in Safari
7.0 on a 2.3 GHz Intel i7 Macintosh with 16 GB of RAM.
We ran three tests and measured the delay between chang-
ing an attribute value in InterState’s runtime model and
when that change was reflected in the runtime output.

In the first test, we created an object named obj whose
prototype chain is N objects long, as in:

obj.prototypes = proto1

proto1.prototypes = proto2

…
proto(N-1).prototypes = protoN

We then measured the latency between changing protoN
and the runtime updating its DOM output for obj. In the
second test, we measured the same latency for an object
with N prototypes, as in: obj.prototypes = [proto1,
…, protoN]. In the third test, we created an object with N
copies and measured the time it took for a change to affect
the runtime’s DOM output for every copy.

For each test, we measured the highest value of N for which
a change was perceived to be instantaneous (100 millisec-
onds). We found that performance scaled linearly in all
tests. The first test indicated that a prototype chain of 58
objects could be handled instantaneously. By contrast, the
longest prototype chain in the implementation of the
Eclipse IDE is only nine classes long. The second test indi-
cated that an object could have about 2,400 prototypes be-
fore changes have any visible delay. This is far more than
necessary in real-world interfaces. The third test indicated
that 1,200 simultaneous changes to DOM attributes would
appear instantaneous. By contrast, InterState’s constraint
solver, ConstraintJS [30], could handle about 2,000 simul-

taneous changes in the same testing environment, which
indicates that the InterState runtime only adds a 40% over-
head. Much of this overhead comes from parsing and inter-
preting constraints, which is done in the runtime (rather
than natively) to enable InterState’s dynamic scoping. As
our results indicate, InterState can scale up to real-world
interfaces with respect to performance. It is also important
to note that a developer can implement any performance-
critical operations natively and reference them in InterState.

Editor Scalability
InterState’s editor includes a number of features to allow
programmers to navigate and understand complex behav-
iors. We described some of these techniques—such as pin-
ning, and links to navigate between InterState objects—in
the “InterState Visual Notation and Editor” section above.

Additionally, InterState’s visual notation for state machines
is able to convey behaviors using less space than textual
code. For instance, the image carousel from the user study
required about 60 lines of JavaScript. In InterState, the
same behavior required two objects (with three states and
six transitions total) and 33 constraints across 22 properties.
With the same font size, the InterState implementation re-
quired 30% less display space despite conveying more in-
formation (e.g. inherited properties and current property
values). This is primarily because InterState’s visual nota-
tion reduces the verbosity needed to express states and es-
tablish constraints.

RELATED WORK
InterState is influenced by work in multiple domains, some
of which we have described in previous sections.

Spreadsheet and Visual Programming
Many researchers consider spreadsheets to be the most
popular form of “programming” [22]. InterState leverages
several spreadsheet conventions, such as localizing errors
only to problematic cells. Several other systems have used
spreadsheet-like ideas to make it easier to create graphical-
interfaces. For example, Forms/3 [7] demonstrated that pro-
cedural and data abstractions and graphical output were
viable with spreadsheets. InterState builds on these spread-
sheet-like concepts by combining them with state machines.
These state machine are represented graphically, an idea
explored by a number of visual programming systems—see
[14,25,38] for surveys.

Constraint Libraries for Imperative Languages
A number of constraint libraries for imperative languages
have tried to simplify the development of interactive behav-
iors [4,9,21,23,24,30]. These systems have explored ways
to make constraints more expressive, including with multi-
way constraints and constraint hierarchies. Of these, the
most relevant to InterState is ConstraintJS (CJS), a Java-
Script library on which InterState is built [30]. While Inter-
State and CJS both define interactive behaviors by combin-
ing states and constraints, CJS was built specifically to fit
into the context of imperative JavaScript code, whereas
InterState introduces a novel visual notation to allow pro-

grammers to express interactive applications with little or
no imperative code. Achieving this goal went beyond simp-
ly adding a visual notation on top of CJS; it also required
designing many new language features, as discussed above.

Finite State Machine Libraries
A number of libraries have also added support for finite-
state machines in textual languages to address the challenge
of tracking GUI state [29]. TKZink, IntuiKit [17], and
HsmTk [3] use state machines to allow interface designers
to specify different application appearances in different
states. Similarly, SwingStates [1] integrates finite state ma-
chines with the Java Swing toolkit. By adding constraints to
its notion of state, InterState’s programming model makes it
easier to specify how an interface reacts to state changes.

Event Languages and Models
Many commercial and research systems have used and
augmented the event-action framework. Early event mod-
els, like Sassafras [13] and the University of Alberta User
Interface Management System [10] inspired the features of
future commercial systems [22]. One interesting extension
of the standard event model is the elements, events, & tran-
sitions (EET) model, which allows programmers to more
concisely express how user interfaces should respond to
user events [8]. We built on some of the ideas introduced in
these systems, such as dynamic event targets in transitions,
to increase the expressiveness of InterState's state machines.

UIDLs and Frameworks for Interactive Systems
User Interface Description Languages (UIDLs) have been
created to explore alternate ways to represent GUI behavior
and appearance. ICOs [27] combines petri nets with frag-
ments of imperative code and also provides a visual editor.
Despite addressing a related problem, InterState’s design is
conceptually different. For instance, by placing state ma-
chines inside of objects (as opposed to treating petri-nets as
top-level), InterState’s allows behaviors to be inherited in
the same fashion as properties. Other frameworks have ex-
plored alternative ways to declare GUI behaviors. Loa [2],
for instance, combines data bindings, templates, and in-
teractors. However, Loa’s feature set, like ConstraintJS,
was built to fit in with existing imperative languages.

CONCLUSION & FUTURE WORK
Currently, we have only tested InterState with experienced
programmers, but we believe the ideas behind InterState
will also allow end-user programmers who are familiar with
spreadsheets to create custom behaviors. Although the cur-
rent syntax for InterState constraints seems somewhat natu-
ral for mathematical expressions (e.g. width*2), it could
be improved for more complex expressions, which current-
ly use JavaScript syntax (e.g. other_obj[this.prop_
name]). We plan on investigating ways of making the con-
straint syntax more beginner-friendly, guided by common-
alities in how users naturally describe behaviors [32].

InterState’s primary goal is to simplify the specification of
GUI behaviors, so it is best for interactive user interfaces

(the feel). Tools like Adobe Photoshop or Illustrator are still
better for specifying the look of non-interactive interfaces
or components. We plan on investigating ways to allow
designers to design the look of components in Photoshop
and the behavior of those components in InterState.

InterState shows how innovations in the execution model,
combined with a visual notation and live editor, can work
together to enable programmers to express interactive be-
haviors concisely and naturally. InterState also addresses
many of the previously identified issues of programming
with state machines and constraints and shows the value of
putting these ideas together into a single cohesive pro-
gramming framework. The InterState editor and an Inter-
State tutorial are available online at http://istate.co.

ACKNOWLEDGEMENTS
Funding for this research comes from Adobe and from NSF
grant IIS-1116724. Any opinions, findings, and conclusions
or recommendations are those of the authors and do not
necessarily reflect those of any of the sponsors.

REFERENCES
1. Appert, C. and Beaudouin-Lafon, M. SwingStates: Adding state

machines to Java and the Swing toolkit. Software: Practice and
Experience 38, 11 (2008), 1149–1182.

2. Beaudoux, O., Clavreul, M., Blouin, A., et al. Specifying and
Running Rich Graphical Components with Loa. EICS, (2012),
169–178.

3. Blanch, R., Beaudouin-lafon, M., and Futurs, I. Programming
Rich Interactions using the Hierarchical State Machine Toolkit.
AVI, (2006), 51–58.

4. Bostock, M., Ogievetsky, V., and Heer, J. D3: Data-Driven
Documents. Visualization and Computer Graphics 17, 12
(2011), 2301–2309.

5. Brandt, J., Guo, P.J., Lewenstein, J., and Klemmer, S.R.
Opportunistic Programming: Writing Code to Prototype, Ideate,
and Discover. IEEE Software 26, 5 (2009), 18–24.

6. Burckhardt, S., Fahndrich, M., de Halleux, P., et al. It’s Alive!
Continuous Feedback in UI Programming. SIGPLAN 48, 6
(2013), 95–104.

7. Burnett, M., Atwood, J., Djang, R.W., Gottfried, H., Reichwein,
J., and Yang, S. Forms/3: A First-Order Visual Language to
Explore the Boundaries of the Spreadsheet Paradigm.
Functional Programming 11, 2 (2001), 155–206.

8. Frank, M.R. Model-Based User Interface Design By
Demonstration and By Interview. GT PhD Thesis, (1995).

9. Freeman-Benson, B. Kaleidoscope: Mixing Objects,
Constraints, and Imperative Programming. OOPSLA, (1990),
77–88.

10. Green, M. A Survey of Three Dialogue Models. ACM
Transactions on Graphics 5, 3 (1987), 244–275.

11. Hancock, C.M. Real-Time Programming and the Big Ideas of
Computational Literacy. MIT PhD Thesis, (2003).

12. Harel, D. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming 8, 3 (1987), 231–
274.

13. Hill, R.D. Supporting Concurrency, Communication, and
Synchronization in Human-Computer Sassafras UIMS.
Graphics 5, 3 (1987), 179–210.

14. Hils, D.D. Visual languages and computing survey: Data flow
visual programming languages. Journal of Visual Languages &

Computing 3, 1 (1992), 69–101.
15. Hudson, S.E. and Mankoff, J. Extensible Input Handling in the

subArctic Toolkit. CHI, (2005), 381–390.
16. Ko, A.J., Myers, B.A., and Aung, H.H. Six Learning Barriers in

End-User Programming. VL/HCC, (2004), 199–206.
17. Lecoanet, P., Lemort, A., Mertz, C., et al. Revisiting Visual

Interface Programming: Creating GUI Tools for Designers and
Programmers. UIST, (2004), 267–276.

18. Letondal, C., Chatty, S., Phillips, W.G., and André, F. Usability
requirements for interaction-oriented development tools. PPIG,
(2010), 12–26.

19. Malayeri, D. and Aldrich, J. CZ!: Multiple Inheritance Without
Diamonds. OOPSLA, (2009).

20. Maloney, J.H., Loop, I., and Smith, R.B. Directness and
Liveness in the Morphic User Interface Construction
Environment. (1995), 21–28.

21. Meyerovich, L., Guha, A., and Baskin, J. Flapjax: A
Programming Language for Ajax Applications. OOPSLA,
(2009), 1–20.

22. Myers, B., Hudson, S., and Pausch, R. Past, Present, and Future
of User Interface Software Tools. TOCHI 7, 1 (2000), 3–28.

23. Myers, B.A., Mcdaniel, R., Miller, R., et al. The Amulet
Environment: New Models for Effective User Interface
Software Development. TOSE 23, 6 (1997), 347–365.

24. Myers, B.A. Garnet: Comprehensive Support for Graphical,
Highly Interactive User Interfaces. Computer 23, 11 (1990), 71
– 85.

25. Myers, B.A. Taxonomies of Visual Programming and P rogram
Visualization. Visual Languages and Computing 1, 1 (1990),
97–123.

26. Myers, B.A. Separating Application Code from Toolkits:
Eliminating the Spaghetti of Callbacks. UIST, (1991), 211–220.

27. Navarre, D., Palanque, P., Ladry, J.-F., and Barboni, E. ICOs: A
Model-Based User Interface Description Technique dedicated to
Interactive Systems Addressing Usability, Reliability and
Scalability. TOCHI 16, 4 (2009), 1–56.

28. Norman, D. The Design of Everyday Things. Doubleday, New
York, New York, USA, 1988.

29. Olsen, D.R. User Interface Management Systems: Models and
Algorithms. Morgan Kaufmann, San Mateo, CA, 1992.

30. Oney, S., Myers, B., and Brandt, J. ConstraintJS: Programming
Interactive Behaviors for the Web by Integrating Constraints and
States. UIST, (2012), 229–238.

31. Pane, J.F., Myers, B.A., and Miller, L.B. Using HCI Techniques
to Design a More Usable Programming System. HCC, (2002),
198–206.

32. Park, S.Y., Myers, B., and Ko, A.J. Designers’ Natural
Descriptions of Interactive Behaviors. VL/HCC, (2008), 185–
188.

33. Samek, M. Who Moved My State? Dr. Dobb’s Journal, 2003.
34. Travers, M. Recursive Interfaces for Reactive Objects. CHI,

(1986), 379–385.
35. Ungar, D., Chambers, C., Chang, B.-W., and Hölzle, U.

Organizing programs without classes. Lisp and Symbolic
Computation 4, 3 (1991), 223–242.

36. Wingrave, C.A. and Bowman, D.A. Tiered developer-centric
representations for 3D interfaces: Concept-Oriented design in
Chasm. VR, IEEE (2008), 193–200.

37. Vander Zanden, B.T., Myers, B.A., Giuse, D.A., and Szekely, P.
Integrating Pointer Variables into One-Way Constraint Models.
TOCHI l, 2 (1994), 161–213.

38. Zhang, K. Visual Languages and Applications. Springer, 2007.

