
 

Euclase: A Live Development Environment 
with Constraints and FSMs 

Stephen Oney, Brad A. Myers 
Carnegie Mellon University 
Pittsburgh, PA 15232 USA 

{ soney, bam }@cs.cmu.edu 

Joel Brandt 
Adobe Research 

San Francisco, CA 94103 USA 
joel.brandt@adobe.com

 
 

Abstract—Euclase is a live development environment focused 
on creating interactive web applications. It uses a programming 
model that combines constraints and finite state machines to 
specify interactive behaviors. Euclase is “live” in the sense that 
while the user is developing code, their program is always 
executing. Changes made to the source of the program are 
reflected immediately in the running program. We identify some 
of the implementation and design challenges of making our 
development environment live, including performance issues, 
ensuring predictability, dealing with errors in the source, and 
handling edge cases such as the removal of code that is currently 
running. We also discuss how Euclase’s use of finite state 
machines and constraints can help alleviate these difficulties. 

Index Terms—Live development, interactive applications, 
constraints, finite state machines, interaction design 

I. MOTIVATION 
Interaction designers often find it valuable to build high-

fidelity interactive prototypes of interactive behaviors, both to 
fully explore an idea and to clearly communicate intended be-
haviors to developers [8]. Unfortunately, standard tools and 
languages for building interactive applications are too complex 
for rapid prototyping, and do not conceptually match how de-
signers think about constructing interfaces [12]. Designers usu-
ally iterate through many designs, first sketching the behavior 
of the interactive application and then iteratively refining their 
designs through prototypes and mockups [2,8]. As a result, we 
believe that designers would benefit greatly from programming 
tools that are specifically designed to support rapid iteration on 
user interface behavior and with primitives made especially for 
creating interactive behaviors. 

We consider designers to be a form of end-user program-
mers (EUPs) because they create these prototypes not as a pri-
mary goal, but as a step in designing a user interface [8]. To 
support these designers, we are creating a development tool for 
programming interactive applications. We want our develop-
ment tool to be live (changes in the source are reflected imme-
diately in the running program) in order to achieve beginner 
friendliness, quick evaluation, and quick experimentation. We 
will discuss these goals in more depth in the next section. Be-
cause we consider the development of interactive applications 
to be conceptually separate from the development of backend 
applications [4], we decided to start from scratch and develop 
new programming primitives especially for interactive applica-
tions. In this paper, we will refer to both the interactive editor 
and our underlying programming primitives as the “develop-

ment environment”, as the two are often inseparable from the 
users’ perspective.  

Our system, which is called Euclase, is a visual language 
with a live development environment. As changes are made to 
the source, the running program immediately updates to reflect 
these changes. In this paper, we will give a quick introduction 
to Euclase before focusing on the implementation and design 
challenges of making it a live environment. Previous research 
as part of the Euclase project identified the ways that designers 
think about programming tasks [8] and how a development 
environment might enhance creativity [11]. 

II. LIVE DEVELOPMENT 
One of the most important aspects of our development envi-

ronment is that it is live – changes made to the program’s 
source code are instantly reflected in the running application. 
We decided that it was important to have a live development 
environment for three primary reasons: 

1) Beginner friendliness: Many interaction designers are not 
familiar with traditional programming languages. We hypoth-
esize that by providing a live environment, we can help begin-
ners better understand their programs. We believe that having 
a live development helps bridge the gulf of evaluation [9], 
which can be a significant barrier for new developers [3]. 

One reason is that beginning developers can become dis-
couraged when a barrage of syntactic errors appears after they 
try to compile their programs. Even after they manage to fix all 
of those syntactic issues, by running their program, they will 
often find that they made semantic errors as well, which can 
lead to debugging and potentially another round of syntactic 
and semantic error fixing. A live development environment can 
help novice programmers in overcoming this barrier. Although 
syntactic errors can sometimes be made immediately visible in 
edit-compile-run environments, live programming allows both 

 
Fig. 1. A mockup for the display of the properties of an object in Euclase. 
Properties are represented in rows while different states are represented in 

each column. An entry for a particular property in a particular state 
represents a constraint that applies to that property in that state. 

978-1-4673-6265-8/13/$31.00 c© 2013 IEEE LIVE 2013, San Francisco, CA, USA15



 

syntactic and semantic errors to become immediately apparent 
by enabling developers to immediately test their code. 

Another important aspect of most live development envi-
ronments is that the developer always has a working program1. 
One great aspect of spreadsheet programming, for instance, is 
that when the user makes a mistake in a particular cell’s formu-
la, the entire spreadsheet does not stop working [1,7]. Similar-
ly, Euclase allows errors to be “localized”: cells with errors 
only prevent the parts of the program from running that depend 
on those cells. 

2) Quick evaluation: In addition to helping designers catch 
semantic errors, a live development environment allows de-
signers to quickly evaluate their designs. This is particularly 
important for designers, as reflection-in-action – stepping back 
and evaluating their design as they are in the process of creat-
ing it – is a crucial part of the design process [13]. Previous 
research [8] has shown that designers today are more satisfied 
with their tools for designing an application’s look than with 
those for designing an application’s feel. While sketches and 
drawing applications allow designers to quickly evaluate the 
look of their application during the design process, Euclase is 
designed to be one of the first tools to allow them to quickly 
evaluate the feel of their application. 

3) Quick experimentation: Experimentation is a crucial part 
of the design process and one that is not well supported by 
today’s development environments [2]. Again, it is relatively 
easy to experiment with different application looks with 
sketches, drawing programs, etc. However, it is more difficult 
to change or experiment with the feel of the application. For 
example, imagine that the designer wants to tweak the scroll-
ing “friction” to find a suitable value. With live development, 
this parameter can be iteratively modified to see the result, 
compared to a conventional environment where the user would 
have to re-run the entire program and re-enter the program 
state where this parameter is relevant. 

Live development is particularly important in Euclase, as 
Euclase objects are intended to be highly stateful, with different 
behaviors in different states. Live development allows users to 
forgo the step of repeatedly putting their application in the de-
sired state while iteratively testing it. 

III. EUCLASE DESIGN 
Our development environment’s primary goals are to be:  
• Succinct. We want to be able to express the code for in-

teractive applications in as few lines of “code” as possi-
ble. This means we must have powerful primitives. 

• Beginner friendly and approachable. As previously 
mentioned, many interaction designers are not familiar 
with traditional programming languages [8]. This means 
that our programming primitives should be easy to un-
derstand and not too numerous, a common tension in 
new development tools [14]. Additionally, Euclase 

                                                             
1 This is not necessarily inherent to live development environments but 
because of the implementation requirements of live development 
environments, it is common.  

should be a “gentle slope” system; simple things should 
be simple and difficult things should scale linearly [7]. 
We also made our development environment live to help 
achieve this goal, as we will discuss later.  

• Expressive. Interaction designers often have nuanced 
custom designs [12] and our development environment 
should support these designs. This means that while it is 
convenient to provide pre-made widgets (like buttons 
and scroll bars), designers should be able to understand 
and modify the code for these widgets if desired.  

In deciding what primitives to use, we looked at one-way 
constraints, which have previously been shown to potentially 
simplify development of interactive behaviors [5,6], and there 
is evidence that designers think about relationships using con-
straint-based concepts [8]. A one-way constraint is a relation-
ship that is declared once and maintained automatically. In 
pseudo code, we use X::=Y to express that the variable X is 
constrained to the value of the expression Y. This way, not only 
is X equal to the value of Y immediately after that expression is 
run (as in traditional assignment statements), if the value of the 
expression Y changes later, X’s value is automatically updated.  

Previously, we built ConstraintJS [10], a JavaScript con-
straint library for Web environments. One insight we had in 
designing ConstraintJS is that because user interfaces are often 
stateful [4], it is useful to have constraints that only hold in 
particular application states. A simple example of this is a 
draggable icon. We want a constraint to make the icon follow 
the mouse, but only if that icon is in the dragging state. Thus, 
ConstraintJS allows finite state machines to dictate when one-
way constraints are enabled or disabled. 

In developing ConstraintJS, we found that many interactive 
behaviors could be specified entirely using constraints and fi-
nite state machines together, without extra imperative code. 
Thus, we chose to use these as two of the primary primitives 
for our development environment. However, using Con-
straintJS requires advanced knowledge of JavaScript, CSS and 
HTML programming, so we wanted to take its ideas and make 
them more approachable to interaction designers. 

The fundamental idea of Euclase is to use a spreadsheet-like 
presentation, since many people are familiar with writing for-
mulas (which are a form of one-way constraints). Euclase lists 
properties in rows and states in columns. To specify that a 
property y should be constrained to the value z + 1 in state 
state1, users would simply enter the text “z + 1” in the row 
of y and the column of state1. This is illustrated in Figure 1, 
which is a conceptual illustration of how we envision the sys-
tem looking. 

IV. IMPLEMENTATION 
It is easy to make the case that reflecting changes in source 

code immediately is better than requiring an edit-compile-run 
loop. One reason there are not more live development envi-
ronments is likely because of the difficulties of implementing 
them, especially for compiled languages. 

16



 

A. General Implementation Challenges 
Implementation-wise, we believe declarative languages 

(where the source specifies what goals the program should 
accomplish) are more suitable for live development environ-
ments than imperative ones (where the source specifies how the 
program should accomplish those goals). Live development 
environments for imperative languages often need to re-execute 
code that the developer has changed. However, because imper-
ative code can contain side effects, re-executing the code may 
have undesirable effects that may cause the running program to 
behave differently than it would in a standard edit-compile-run 
environment. For example, suppose a developer has the follow-
ing imperative code in a live development environment: 

 
var num_entries = 1; 
 
function add_entry(e) { 
 //CODE TO ADD ENTRY 
 return num_entries++; 
} 
 
If the developer changes code in the add_entry function, 

should the development environment go back and re-execute 
that code? Should it save information every time the 
add_entry function was called and intelligently try to morph 
any side effects those calls may have had? Should it only 
affect future calls to add_entry? The answer is not clear and 
the fact that add_entry uses a side effect (num_entries++) 
means that each of these three possibilities would result in a 
different value for the variable num_entries. 

Declarative languages, on the other hand, do not rely on side 
effects, meaning that any piece of code can be re-evaluated any 
number of times without changing the program’s behavior. 
This is likely why many of the development environments for 
declarative languages are live, including Chrome’s HTML edi-
tor and many dataflow language editors. Constraints are partic-
ularly well suited to live development environments. Since 
constraints are declarative2, they can be re-evaluated without 
concern for undesirable side effects changing the meaning of 
the program. Additionally, the development environment can 
use the same constraint solver as used by application develop-
ers to make sure that the running program automatically up-
dates in response to changes in the source program. The con-
straints expressed in Euclase are not entirely declarative, be-
cause they are enabled or disabled by finite state machines, 
where transitions are a form of side effect. However, this is 
accounted for in the Euclase implementation. 

B. Euclase Implementation 
Euclase is built in HTML and JavaScript using the Con-

straintJS constraint solver [10]. ConstraintJS uses a pull-based 
constraint solver based on the algorithm described by Vander 
Zanden et al [15].  

One implementation challenge of Euclase was dealing with 
changing variable references. In Euclase, not only may variable 

                                                             
2 Some constraint evaluators allow constraints to have side effects [15]. 
However, constraints in the Euclase environment are more like spreadsheet 
formulas and cannot have side effects. 

values change as the program is executing, but variable refer-
ences may change as the user is editing the program source 
code. For example, if we have a cell for a variable y whose 
value is x+1, not only does the constraint for y need to be re-
evaluated when x changes; it also has to be re-evaluated if the 
user renames, moves, or removes the property x, in order to 
achieve a live response to the edit. Also, if the user adds a vari-
able named x closer in scope, then we need to use that x instead 
of the original x. Further, if the user deletes the property x, Eu-
clase should handle that error without crashing the entire exe-
cuting program. 

Another challenge is handling finite state machine transi-
tions because event listeners must be kept in sync with chang-
ing variable values. Suppose one finite state machine has a 
transition whose event is on('dbl_click', selected_item), 
meaning to switch states when the selected item is double 
clicked, Euclase needs to update its underlying event listeners 
as selected_item changes (listening to every item and deter-
mining later on if it was selected_item would be too ineffi-
cient). Euclase also has mechanisms to ensure that constraint 
values are correctly timed with the transitions that occur in 
finite state machines. 

The same issue applies with function calls: if a cell’s value 
depends on the return value of a particular function and that 
function’s code is edited, Euclase must update the value of the 
cell that relies on that function. 

Performance is also a concern with Euclase. The fact that 
ConstraintJS used pulled constraints (which evaluate only 
when the constraint’s value is requested) instead of pushed 
constraints (which evaluate as soon as a constraint’s value may 
have changed) has important performance implications for Eu-
clase. This helps insure that if the user is making a change to 
the program source code that will not be reflected in the run-
ning program, that change does not need to be re-evaluated. 
Further, if the user edits one cell which subsequently changes 
the value of 100 other cells that one particular constraint de-
pends on, the last cell should only be re-evaluated at most one 
time, rather than 100 times. 

V. DESIGN CHALLENGES OF A LIVE ENVIRONMENT 
In addition to the technical challenges of implementing a 

live development environment, there are also many human-
centric questions about what the user would want the system to 
do in certain situations. For example, what if the program en-
ters a state and the entire source specifying how the program 
should behave in that state is then deleted? For instance, sup-
pose we create an icon with a “selected” state that highlights 
the icon after it has been clicked. What if we then delete our 
specification of what should happen in that “selected” state? 
How should our running application respond? Some viable 
possibilities are: 

• To put the icon back in the last valid state it had be-
fore the selected state. 

• To keep the icon “as-is” until the user resets the appli-
cation. 

17



 

• To detect that an in-use state has been deleted and au-
tomatically reset either the whole application or reset 
the state of that particular icon. 

All of these possibilities can be considered “valid” in some 
sense. In Euclase, we use the second option because it is con-
ceptually the simplest and most predictable for users. 

Also, there are some places where live development does not 
necessarily mean a quicker turnaround time for the develop-
ment of the application. Suppose, for instance, that the devel-
oper has mostly written an application but now wants to make 
tweaks to its “loading” screen that should flash for about three 
seconds before the application loads. In a live development 
environment, how does the programmer specify that they want 
the loading screen to stay visible while they are making tweaks 
to it, instead of requiring repeatedly resetting the application 
(akin to the standard edit-run loop in most compiled lan-
guages)? Some possibilities for dealing with this would be to: 

• Give the developer the option to temporarily disable 
some transitions while they are developing, to ensure 
that the program stays in a particular state. 

• Allow developers to add breakpoints that “freeze” the 
current state of the program but still allow them to 
make changes to particular cells if necessary. 

In our implementation, we are planning to use the latter op-
tion, to avoid the complications that may result from having to 
go back and mark transitions as “special” and because users 
with more development experience may have more familiarity 
with the ideas of breakpoints. 

The importance of visual design to many designers may also 
make it difficult for our users to specify everything solely in 
code. For instance, when creating an interface layout, most 
designers will be familiar with direct manipulation interfaces 
where objects can be directly grabbed, dragged, and their prop-
erties changed in the running interface, rather than dealing with 
the underlying source code. For that reason, we plan on imple-
menting a “design mode” where users specify that they no 
longer want to edit source code by hand and the code should 
not be live, but instead the users can drag and drop objects in a 
static version of the interface (the interface should not be inter-
preting clicks and events). 

We also want to insure that there is no difference between a 
program executing live and a program that executes later. 
There are some questions about timing and when certain cells 
should be executed. For instance, suppose a cell has the value 
random(), which returns a random number. When should that 
random number be generated? Only when the user first enters 
the cell’s value? Only when that value is used? Current spread-
sheets reevaluate the Rand() formula unpredictably whenever 
the sheet is reevaluated. Currently, our implementation would 
use the latter option, so that a program executing live in the 
development environment behaves the same way as it would if 
it went through compile-edit-run loop. 

Finally, the fact that the finite state machines used by Eu-
clase are imperative presents another design challenge. Some-
times, it is important to be able to keep track of how an object 
got into a certain state. For example, if a property has the value 
1 on a transition from the start state but the designer specifies 

that value after that transition has already happened, the prop-
erty’s value should be 1 and not undefined. 

VI. FUTURE WORK 
Euclase is currently under development. When development 

is complete, we plan on making the full source and a demo 
freely available. We also plan on improving the implementa-
tion and adding more features, tutorials, documentation, etc. 

We also want to evaluate the effect that Euclase has on de-
velopers. We plan on first comparing Euclase to traditional 
languages and tools for creating interactive applications, like 
Adobe Flash Professional and JavaScript. We then want to in-
vestigate to what extent any differences are because Euclase is 
a live development environment. We are also interested in find-
ing out the extent to which Euclase can encourage designers to 
test out more possibilities and be more creative. By enabling 
quick experimentation, we want to see if designers end up more 
satisfied with their designs. 

ACKNOWLEDGEMENTS 
Funding for this research comes from a grant from Adobe, 

and from NSF grant IIS-1116724. Any opinions, findings, and 
conclusions or recommendations are those of the authors and 
do not necessarily reflect those of any of the sponsors. 

REFERENCES 
[1] Burnett, M., Atwood, J., and Djang, R. W., “Forms / 3!: A First-

Order Visual Language to Explore the Boundaries of the 
Spreadsheet Paradigm,” p 1–51, 2001 

[2] Grigoreanu, V. et al., “What designers want: Needs of 
interactive application designers,” VL/HCC, p 139–146, 2009 

[3] Ko, A. J., Myers, B. A., and Aung, H. H., “Six Learning Barriers 
in End-User Programming,” in VL/HCC, 2004, p 199–206 

[4] Letondal, C., Chatty, S., Phillips, W. G., and André, F., 
“Usability requirements for interaction-oriented development 
tools,” in PPIG, 2010, p 12–26 

[5] Meyerovich, L. et al., “Flapjax: A Programming Language for 
Ajax Applications,” OOPSLA 2009, p 1–20 

[6] Myers, B., “Separating Application Code from Toolkits: 
Eliminating the Spaghetti of Callbacks,” UIST 1991, p 211–220 

[7] Myers, B., Hudson, S., & Pausch, R., “Past, Present, and Future 
of User Interface Software Tools,” TOCHI, v. 7, p. 3–28, 2000. 

[8] Myers, B., Park, S. Y., Nakano, Y., Mueller, G., and Ko, A., 
“How Designers Design and Program Interactive Behaviors,” in 
VL/HCC, 2008, pp. 177–184 

[9] Norman, D., The Design of Everyday Things. New York, New 
York, USA: Doubleday, 1988 

[10] Oney, S., Myers, B., & Brandt, J., “ConstraintJS: Programming 
Interactive Behaviors for the Web by Integrating Constraints and 
States,” in UIST, 2012, pp. 229–238 

[11] Oney, S., Myers, B., & Zimmerman, J., “Visions for Euclase!: 
Ideas for Supporting Creativity through Better Prototyping of 
Behaviors,” 2009 

[12] Park, S., Myers, B., & Ko, A., “Designers’ Natural Descriptions 
of Interactive Behaviors,” VL/HCC 2008, p 185–188 

[13] Schön, The Reflective Practitioner. London, England: Temple 
Smith, 1983 

[14] Travers, M., “Recursive Interfaces for Reactive Objects,” CHI, 
1994, p. 379–385 

[15] Vander Zanden, et al., “Integrating Pointer Variables into One-
Way Constraint Models,” TOCHI vol. l no. 2, p 161–213, 1994. 

18


