

Codelets: Linking Interactive Documentation
and Example Code in the Editor

Stephen Oney
Carnegie Mellon University
Pittsburgh, PA 15213 USA

soney@cs.cmu.edu

Joel Brandt
Adobe Systems

San Francisco, CA 94103 USA
joel.brandt@adobe.com

ABSTRACT
Programmers frequently use instructive code examples
found on the Web to overcome cognitive barriers while
programming. These examples couple the concrete func-
tionality of code with rich contextual information about
how the code works. However, using these examples neces-
sitates understanding, configuring, and integrating the code,
all of which typically take place after the example enters the
user’s code and has been removed from its original instruc-
tive context. In short, a user’s interaction with an example
continues well after the code is pasted. This paper investi-
gates whether treating examples as “first-class” objects in
the code editor — rather than simply as strings of text —
will allow programmers to use examples more effectively.
We explore this through the creation and evaluation of
Codelets. A Codelet is presented inline with the user’s
code, and consists of a block of example code and an inter-
active helper widget that assists the user in understanding
and integrating the example. The Codelet persists through-
out the example’s lifecycle, remaining accessible even after
configuration and integration is done. A comparative labor-
atory study with 20 participants found that programmers
were able to complete tasks involving examples an average
of 43% faster when using Codelets than when using a
standard Web browser.

Author Keywords: programming, example, documentation,
structured editing

ACM Classification Keywords
H.5.2. [Information interfaces and presentation]: User Inter-
faces - Training, help, and documentation;

General Terms: Design, Human Factors.

INTRODUCTION
Instructive code examples play a central role in program-
mers’ work practice [3,15,30]. Blocks of example code
found in library documentation [15] and Web resources —
such as blogs, forums, and code search engines [34] — help
meet both learning and productivity needs [25]. These ex-
amples couple a concrete piece of functionality, usually

implemented in 5–20 lines of code, with contextual infor-
mation such as a written description of how the code works
[2]. One data point suggests that when programmers are
learning new libraries, as much as one-third of their code is
directly taken from examples in documentation [33]. Even
when a concept is well understood, programmers often
choose to copy and paste examples rather than write code
from scratch to save time and avoid errors [3].

Blocks of example code on the Web are typically situated
within a rich context. For example, jQuery Mobile’s docu-
mentation1 provides thorough descriptions of how each
example functions, and often presents multiple alternative
examples for a given high-level goal. Example code can
even be interactive. For instance, CSSPortal’s Rounded
Corner Generator2 provides a GUI for configuring parame-
ters within an example. However, once a programmer
pastes an example into her code, the rich context, alterna-
tives, and interactions are lost. In a typical code editor,
there is no notion of code provenance — example code is
indistinguishable from code written by hand.

1 jQuery Mobile is a library for developing Web pages intended for use on a mobile

device. Documentation can be found at http://jquerymobile.com/demos/
2 http://www.cssportal.com/css3-rounded-corner/

Figure 1. Codelets attach helpers to regions of code. Helpers are dis-
played inline with the rest of the code without obscuring it. This Codelet
creates a jQuery Mobile button. Its helper is interactive and allows its
user to customize the button by interacting with a form, drawing a line to
illustrate which region of code each form element is changing. The user
may also edit the code and the form will automatically update itself.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

2697

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

This paper begins with the insight that a user’s interaction
with an example continues well after the code is pasted in
her editor. Typically, she must understand, configure, inte-
grate, and test the example before it is useful [9]. In fact, for
many programmers, interaction with an example begins
when it is pasted. In a recent study of example use, one
participant described why he copied code before under-
standing it by saying “I think it’s less expensive for me to
just take the first [code I find] and see how helpful it is at ...
a very high level ... as opposed to just reading all these de-
scriptions and text.” [3]

Codelets: First-Class Examples
This paper investigates whether treating examples as “first-
class” objects in the code editor — rather than simply as
strings of text — will allow programmers to use examples
more effectively. Prior studies suggest that examples may
be difficult to use for three reasons: First, users may face
difficulty in understanding how to configure or adapt an
example to their specific needs [20]. Second, integrating
an example into the user’s code can introduce bugs (e.g., if
variables are not renamed properly, or a related library file
is not included) [3,20]. Finally, these tasks are often inter-
leaved with other coding tasks, which increases the likeli-
hood that users will forget important contextual information
[3,9]. Based on these reasons, we hypothesize that an editor
can help programmers use examples more effectively if it:

• Emphasizes separate functional units in the user’s code
by demarcating examples.

• Maintains code provenance by linking documentation
to the example code.

• Supports adaptation by allowing example authors to
build structured editors or configurators that are pre-
sented inside the user’s code.

• Facilitates integration by allowing an interactive exam-
ple to automatically adapt to the use context.

• Makes supporting materials persistent so that users can
interleave example use with other tasks.

We explore these ideas in a prototype code editor that sup-
ports the insertion of Codelets (see Figure 1). A Codelet is a
region in the user’s code that contains a block of example
code and an associated interactive helper. The helper can
make changes to the example code, and thus can present the
user with structured editors or configurators. Additionally,
the helper can inspect the user’s entire code base, and so
can tailor the example based on features in the rest of the
code. Codelet interactions are evaluated through a compara-
tive laboratory study with 20 participants. On average, pro-
grammers using Codelets were able to complete a pro-
gramming task 43% faster (µCodelet = 12.7 minutes, µcontrol =
22.2 minutes, p < 0.01).

Pragmatically, for Codelets to be effective programming
tools, there must be a large collection of them available.
Who will build them? Traditionally, providing rich editor
interactions, such as structured editors, has been solely in

the hands of the editor authors. However, the creation of
examples is typically rests in the hands of library and doc-
umentation authors or other third parties. To bridge this
gap, we propose an API for the code editor that allows doc-
umentation authors to create Codelets in a manner similar
to how they currently author documentation. “Static”
Codelets (those with helper widget that only offer static
documentation) are created with a single HTML-like file. To
add interactivity, the Codelet author makes calls against a
JavaScript API to access the user’s code and make changes
to portions of the example. This means that authoring a
basic Codelet is approximately the same amount of work as
posting a static example on the Web. Authoring an interac-
tive Codelet is similar in difficulty to building a Web page
that is an example “configurator” (like CSSPortal’s Round-
ed Corner Generator mentioned above).

Key Contributions
This paper makes three key contributions: First, it offers a
set of code editing interactions that support example under-
standing and use. Second, it contributes to a theory of ex-
ample usage by providing further data on what makes ex-
ample use challenging — if a particular interaction is effec-
tive, it suggests that the problem it was designed to address
is real. Finally, it offers an implementation technique for
allowing documentation authors (or other third-parties) to
create specialized code editing interactions.

SCENARIO: PROGRAMMING WITH CODELETS
Codelets help programmers by attaching “helpers” to frag-
ments of code. We illustrate how Codelets work through a
scenario. Jane is a programmer creating a Web site template
for a small publishing company’s online books. She decides
to try a two-column layout: a sidebar column where readers
can navigate to different chapters and a text column with
the content of the book. Like many programmers, Jane “of-
floads” her memory to example code [3,5] and has stored
some of her favorite site templates as Codelets. Even
though she could re-create these templates from scratch if
necessary, she never bothers, as it is often faster to copy
example code.

Rapidly accessing examples and documentation — In her
editor, Jane presses CTRL-/ to pull up her in-editor Codelet
search interface (Figure 2a), searches for “column layout,”
and selects the first result. As soon as she does, a Codelet
(Figure 2b) appears. This Codelet has two parts: a block of
example code — which is inserted in the editor as usual —
and a helper. Here, the helper is a piece of interactive doc-
umentation that is “linked” to the code it describes. When
the helper is inserted, it “pushes” the surrounding code out
of the way so that Jane can always see her entire codebase.
To reduce their visual salience in the editor, helpers are
indented at the same level as their surrounding code. In this
case, Jane is familiar with the example she has just inserted
and does not need to read the description attached in the
helper. She immediately hides it by pressing ESC, knowing
that she can re-display the helper later if necessary.

2698

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

Helpers as learning tools — Jane now has a basic template.
Next, she wants to add some style to her sidebar. She de-
cides that she would like to have a border around it, prefer-
ably with rounded edges. She is not sure how to do this, and
so she turns to Web search. She finds a Codelet for tuning
border parameters that seems useful. After she pastes the
URL into her Codelet search bar, the Codelet shown in Fig-
ure 3c appears. It contains a “builder” interface that allows
her to quickly tune parameters by interacting with a stand-
ard Web form. As she experiments with different border
radius values, the Codelet draws lines to indicate how
changing a slider’s value modifies the code. This helps her
build mappings between her conceptual understanding of
what she wants and the low-level CSS primitives for doing
so, a major cognitive barrier faced by programmers with
unfamiliar code [11,22].

Warnings and related Codelets — After Jane finds a border
radius and color she likes, she realizes that readers might
not always want to see the sidebar. Ideally, they should be
able to hide it when it’s getting in the way. She adds a
“close” button to the sidebar and decides that she wants the
sidebar to animate when the user closes it by sliding off-
screen to the left. She decides to do this using the “$fx”
JavaScript animation library. She has never used $fx before
and isn’t familiar with the syntax for animations, so she
decides to search for a Codelet to help her get started. When
Jane adds this Codelet to her editor, it quickly pops up a
yellow warning (Figure 4d), indicating that she has forgot-
ten to include the $fx library. Jane opens the “related
Codelets” list shown in Figure 4e and sees a Codelet for
including $fx. She drags it into the header and a Codelet
(Figure 4f) inserts the code to properly include the $fx li-
brary, suppressing the warning. Deciding she’ll never need
to re-invoke this helper, she destroys it by clicking the “x”
in its top left corner.

Tweaking parameters — Jane then goes back to the $fx
animation Codelet and tunes the parameters of her anima-
tion, again using the helper interface to modify code. As
with the Codelet for generating rounded CSS corners, she
finds that experimenting is an effective way to learn how
the code works [29]. After she tunes her animation, she
realizes that although she animates the sidebar, the reading

Figure 2. Our augmented editor allows Codelets to be searched for and inserted in the editor, searching for stored Codelets based on their keywords
and descriptions. The search box (A) is invoked using a keyboard shortcut. If a result is selected, a Codelet (B) is inserted following the caret.

Figure 3. A Codelet inspired by CSSPortal’s Rounded Corner Genera-
tor. As the developer moves the slider, it modifies the code and illus-
trates which parts of code are changing.

Figure 4. This Codelet displays a warning (D) after it detects the ab-
sence of a required library. On its right side (E) is a link to a Codelet for
including the library. The link can be dragged into place and its Codelet
(F) is inserted.

A

B

C

E
D

F

2699

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

pane isn’t re-claiming its space. In fact, she needs to ani-
mate both the sidebar and the reading pane. To animate the
reading pane, she copies the code that animated the sidebar
and pastes it immediately below. The attached Codelet is
copied and pasted as well but Jane now feels comfortable
with the $fx library, so she decides to edit her code manual-
ly rather than through the helper’s interface. As she edits
her code, the helper’s interface updates itself automatically
to reflect the parameters she has entered.

Re-invoking Codelets — After Jane finishes tuning her ani-
mations, she has a template that she’s happy with. She starts
filling in some content to see how it will look to a reader.
When testing it, she decides to tune the borders on the side-
bar once again, so that the left side isn’t rounded. She re-
invokes the border Codelet she had used before by holding
CTRL and clicking the region of code it was tied to. She
again modifies the border values until she is satisfied. Jane
has quickly produced a working template using an unfamil-
iar library and CSS feature. In addition, her code contains
interactive helpers attached to regions of code where she
inserted examples. If Jane or anyone else looking at her
code later wants to better understand and modify that region
of code, they can re-invoke these helpers in addition to be-
ing able to modify it manually.

To understand the benefits and tradeoffs of interacting with
Codelets, we built a prototype and evaluated it in a compar-
ative lab study. We first present the results of that study,
and then describe how Codelets are implemented. The im-
plementation consists of two parts: the Codelet API with
which Codelets are written and the implementation of
Codelet displays in the editor.

EVALUATION
To evaluate the utility and effectiveness of programming
with Codelets, we prototyped a set of Codelets for jQuery
Mobile (jQM), a framework used to build websites for mo-
bile devices. We recruited 20 participants — seven female
and thirteen male. Our participants were engineers, web
designers, and graduate students ages 22–45. Two partici-
pants (not included in the 20) were excluded because of a
lack of programming knowledge. Eighteen of the 20 studies
were conducted remotely using screen and audio sharing.

Method
Participants were first randomly split into two groups —
Codelet or control. Both groups were given a code editor
with a sidebar containing an output preview that they could
refresh as desired. Codelet participants were first trained in
how to use Codelets with a guided tutorial while control
participants given a short tutorial on how to use the code
editor. Each session consisted of two parts: A and B, part B
being optional.

For part A, participants in both groups were asked to follow
four steps to create a website using jQM. The steps were the
same for both groups, but Codelets participants used jQM
Codelets while control participants used the official jQM

documentation, which is example-oriented. To control for
search times, control participants were given links directly
to relevant examples in the jQM documentation and Codelet
participants were given relevant search terms. Additionally,
whenever Codelet participants performed an in-editor
search, the last result was always a link that initiated a Web
search over jQM’s documentation.

Participants that finished part A with spare time were given
part B, which was oriented towards gathering qualitative
results. This part asked both groups to use a Codelet-
enabled editor to create a more complex website using jQM
(control participants were first given a Codelets tutorial.)
Part B was more freeform than part A; participants were
given a goal website and the sources of three sample jQM
websites that contained parts of their goal. Fourteen partici-
pants started part B and two completed it (both in the
Codelet group).

Finally, all participants were asked to complete a short sur-
vey. Participants in the control group completed this survey
before being exposed to Codelets. The study took approxi-
mately one hour to complete; a small gratuity was given in
return for participation.

Results

Part A (Stepwise)
Part A consisted of four steps. For each step, we measured
the time taken and the number of preview refreshes. Figure
5 gives an overview of the quantitative results. Participants
using Codelets required significantly fewer refreshes (two-
tailed heteroscedastic Student’s t-test, p < 0.05) and took
significantly less time (p < 0.01) than participants in the
control condition. By breaking the data down into individu-
al steps in Table 1 and below, we can gain more insight into
these results.

Step 1 asked participants to create a basic jQM page. The
example used by the Codelet group contained static explan-
atory documentation. Participants in the Codelet group per-
formed this step significantly faster (p < 0.01) than the con-
trol group. Part of this effect may be the result of the
Codelet group being more familiar with their code editor,
having gone through a longer tutorial. The rest of this effect

Figure 5. The overall time spent and number of refreshes in part A. Par-
ticipants with Codelets completed tasks significantly faster and with sig-
nificantly fewer refreshes than participants using Web examples.

Time (m) # Refreshes

2700

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

can be attributed to differences in how the two groups read
documentation, as described in step 2 below.

In step 2, the Codelet used by the Codelet group was static
and contained the same example code as the official docu-
mentation used by the control group. One might expect the
times for both groups to be nearly identical. However, users
in the Codelet group finished this task an average of 47s
faster, with fewer page refreshes.

During steps 1 and 2, participants in the Codelet group were
less likely to read static documentation after example code
was inserted into their document, unless they were stuck.
One participant later said, “I just thought [the helper] was
kind of there for newbies who want to know more about a
specific feature.” By contrast, in step 2, although the control
group was pointed to the same example code in the docu-
mentation, they spent an average of 22s between identifying
the correct example code and pasting it into the editor. The
majority of this time was spent reading the documentation
to be sure they were copying the correct code and double
checking that they were pasting it in the appropriate place.
After pasting their code, participants in the control condi-
tion spent more time “habituating” the new code — fixing
indentation issues and reformatting it according to their
personal preferences. The increase in the number of page
refreshes in the control condition was due to the prevalence
of a pattern of copying the code from the documentation,
pasting it, and immediately refreshing the page to see the
output. Codelet participants, by contrast, customized the
example code before refreshing.

Step 3 asked participants to create jQM buttons. The Codelet
group was given the interactive helper shown in Figure 1.
This helper could write most of the code for them, but re-
quired them to manually set the href attribute in code. Par-
ticipants in the Codelet group rarely expressed hesitation
after realizing they had to set the href attribute outside of
the helper and switched from interacting with the Codelet to
manually editing code with little difficulty. The Codelet
group finished this step nearly twice as fast as the control
group, using fewer than half as many preview refreshes.

For step 4, participants created a new jQM page with a but-
ton, all widgets they had used before. This means that they
could complete this task by copying and modifying their
code from steps 1–3. The control group had the highest
variance relative to task time because participants that felt
comfortable with jQM copied their code from previous steps
without spending time referring to documentation. In this

step, only 4/10 control participants chose to refer to docu-
mentation, with 9/10 choosing to copy their own code. By
contrast, only 1/10 Codelet participants copied their own
code, the majority choosing to insert new Codelets. Put
another way, the majority of participants preferred to insert
code via Codelets rather than copying and pasting, despite
having learned in the tutorial that Codelets would be been
copied along with their previous code.

Part B (Freeform)
As mentioned in the “method” section, in part B, partici-
pants started with an empty document and were given three
sample jQM websites. Fourteen participants spent time on
the optional second part — four from the control group and
ten from the Codelet group. Of these fourteen participants,
thirteen chose to start developing from scratch rather than
copying and pasting an example template into their code.
The one participant that did not use Codelets for this task
chose to start this part by copying and pasting from one of
the three sample jQM websites.

Survey
When asked what was most useful about the jQM documen-
tation 10/10 control participants cited the example code that
they could copy. This indicates that examples played a cru-
cial role in their ability to complete the task. Most Codelet
participants cited the Codelets with builders and the ability
to quickly insert code as the editor’s most useful features.

On a nine-point Likert Scale, participants in the Codelet
group rated their confidence that they could rewrite their
code without any documentation higher than those in the
control condition (4.63 vs. 3.80). Additionally, they rated
their understanding of the code they wrote as marginally
higher (7.88 vs. 7.80).

Discussion
The results from our study suggest that Codelets changed
the way participants wrote code and read explanations.
Whereas participants in the control group tended to read
textual explanations before copying code from the jQM doc-
umentation, Codelet participants spent more time focusing
on the example code. This may be because control partici-
pants are aware that by copying the example from the doc-
umentation, they will lose the surrounding explanation
whereas Codelet participants always have these explana-
tions attached to their code and can easily recall it if neces-
sary. Alternatively, Codelet participants might have been
less likely to read documentation because the documenta-
tion in Codelets is less prominent than it is in the official
jQM documentation. Another possible explanation is that

Table 1. Task completion time and number of refreshes used for testing during part A. Time is given in minutes, Refreshes is given as a count. Stand-
ard deviation is shown in parentheses. Columns are highlighted in green** if the difference in means is significant at p < 0.01, in blue* at p < 0.05.

2701

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

participants might always be less prone to read static docu-
mentation if the code it describes is already in their project.

In our evaluation, we found two classes of Codelet users:
those that tended to leave every helper open and those that
never kept more than two helpers open simultaneously.
Five out of the ten Codelet participants tended to leave
helpers open and the usage pattern seemed to have no sig-
nificant correlation with completion speed or reported pro-
gramming expertise. Participants tended retain usage styles
for the duration of the study. Those who preferred closing
helpers said they did so to “save space” and “focus on the
code.” One possible design implication is that helpers could
have a third state between expanded and collapsed that
takes up less space than the fully expanded helper.

We also found that Codelets helped some programmers by
implicitly delineating a topic or element in their code. One
common mistake in the control group was to incorrectly
insert code within the region of an example they had al-
ready copied. One control participant even decided to man-
ually demarcate the range of copied examples with com-
ments to avoid this mistake. Having Codelets attached to
these regions also encapsulates them in a section that is
semantically meaningful to whatever framework the pro-
grammer is using.

An interesting area for future work is to investigate learning
outcomes. One participant in the control group initially
started typing out their program line by line instead of
copying and pasting. When asked why, they reasoned that
by typing out their programs when using a new framework,
it made them “learn better.” This finding is consistent with
prior work on example use (e.g., [3]). Although the Codelet
group had a slightly higher self-reported confidence in their
knowledge and understanding of their code, further inquiry
would be necessary to see if this is actually the case.

CODELET API
The ability to create rich editor interactions is traditionally
placed solely in the hands of editor authors. However, it is
unreasonable to expect editor authors or any single group to
create specialized documentation for the abundance of li-
braries and frameworks programmers use. Codelets open
the space of who can create interactive, in-editor documen-
tation by providing an API for third parties.

This section describes the Codelet API, which is used to
author individual Codelets. In the next section, we discuss
the implementation of Codelet displays in the editor. To put
it another way: this section explains what a documentation
author would need to know to author new Codelets; the
following section explains what an editor author would
need to know to add Codelet support to his editor.

The Codelet API enables meaningful communication be-
tween Codelets and editors; it allows Codelets to read, in-
terpret, and modify code; react when the programmer modi-
fies code; and display custom interfaces and annotations in
the editor. It is designed to provide a low floor — a static

Codelet’s implementation is approximately as complex as a
static webpage — while providing a high ceiling. The
Codelet API is described below, with an example Codelet
implementation in Figure 6.

Overview
At a high level, Codelets are written in XML, with a top-
level tag of codelet. Beneath this, the Codelet contains
two elements: a head and a body.

A Codelet’s header (lines 2–7 in Figure 6) contains meta-
information about the Codelet. Its title property is dis-
played at the top of the Codelet and in search results.
Codelets may optionally also have keywords or a short
description (omitted in Figure 6) that are used by the
editor’s built-in search tool. The Codelet’s type determines
how the code snippet will be inserted and formatted in the
editor. If the type is block, the snippet is meant to span
one or more lines; if the type is inline, the snippet is
meant to be a portion of a single line of code. Finally, the
Codelet’s lang parameter determines which parser the
Codelet will use by default. In the future, the lang parame-
ter may also aid in filtering search results.

The majority of a Codelet’s content is in its body (lines 8–
22 in Figure 6.) The body contains examples, pages, and
links to related Codelets. An example, in the context of the
Codelet API, is a snippet of code. A Codelet may have any
number of examples, but only one example at a time will be
shown in the editor. The Codelet in Figure 6 has one exam-
ple, in lines 9–11.

An example may also contain any number of mark ele-
ments. Marks are sections of examples that are intended to
be changeable (the entire example can be edited manually
by the user; in addition mark regions are easy to change and
track programmatically). Marks may be nested and can

Figure 6. An implementation of a short Codelet. Implementation-wise,
Codelets are similar to webpages, but also have a special API for inter-
acting with the editor.

<codelet>
<head>
 <title> Creating a var </title>
 <keywords> create var </keywords>
 <type> block </type>
 <lang> javascript </lang>
</head>
<body>
 <example>
 var <mark id="name" /> = <mark id="value" />;
 </example>
 <page>
 Name : <input type="text" id="name_inp"/>

 Value: <input type="text" id="val_inp" />
 </page>
 <script src="jquery.js" />
 <script src="widgets.js"/>
 <script>
 attach_input_to_mark($("#name_inp"), "name");
 attach_input_to_mark($("#val_inp"), "value");
 </script>
</body>
</codelet>

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

2702

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

specify what values they expect. For example, a mark for a
variable may specify that it will only accept characters and
digits. If two marks have the same id, those marks will
have the same value as long as the example code is in sync
with its helper. The Codelet in Figure 6 has two marks:
name and value. If name is x and value is 1, the example
code is ‘var x = 1;’

In addition to example elements, a Codelet may contain
any number of page elements. Pages make up the content
of the Codelet’s helper. They are written in standard HTML
and may be stylized and made interactive with CSS and Ja-
vaScript. Only one page is shown at a time but the name of
every page is shown in the leftmost column of the Codelet.
By splitting content into separate pages, Codelets may re-
duce the space taken up by their helpers. The Codelet in
Figure 6 has one page, on lines 12–15. It also imports two
external JavaScript files (lines 16 & 17) and includes Ja-
vaScript on lines 18–21 to make the Codelet interactive.

One feature not shown in Figure 4 is the ability to link to
other relevant Codelets by adding a link element to the
body of the Codelet with a URL (or local file path) and title
for the linked Codelet. The list of related Codelets is shown
in a collapsible panel on the right hand side of the Codelet,
as seen in Figure 4e.

Communicating with the Editor
The above techniques can be used to create static Codelets.
Authors can add interactivity to their Codelets by com-
municating with the editor through a JavaScript API.

Reading & Writing Code
Codelets read the user’s code by calling the get_code
function, which returns a String. This function takes a pa-
rameter to specify a scope: the entire file, the example code
(which may have been modified from its original form by
the user), or the code before or after the example code.

Codelets may then use provided parsers to gain semantic
information about the code. The Codelet API is designed to
be language-agnostic while allowing Codelets to extract
semantic information about code. To balance these two
needs, the Codelet API provides access to parsers and con-
tains a set of widgets for these parsers. The default HTML
parser, for example, includes functions for extracting tag
names, attribute names, and attribute values from the user’s
code. Currently parsers exist for HTML and JavaScript, but
could be included for any number of languages.

Codelets may also add event listeners – functions that are
called when code is edited. Event listeners may be called
when user’s code has changed, when a mark value has

changed, or when the user’s code has moved to a new
place. These event listeners allow Codelet helpers to update
as the user modifies example code. For example, the at-
tach_input_to_mark function used in Figure 6 (lines 19
& 20) automatically adds event listeners to update HTML
input elements’ values (lines 13 & 14) if the programmer
edits code manually.

To write code back to editors, Codelets may change the
value of marks. For instance, if the Codelet implemented in
Figure 6 set name to z and value to 2, its example code
becomes ‘var z = 2;’ Because marks may be nested,
modifying marks in a given example can change code on
larger or smaller scales.

Round-Tripping & Synchronization
When the user modifies a piece of code, the attached
Codelet determines if any marks have changed. It does this
in a “ground-up” fashion, so that if any marks are nested, it
finds the lowest level on which marks may have changed. If
the Codelet finds a valid change to the example’s marks,
then it notifies the example. If not, then the example be-
comes out of sync.

To illustrate, again, consider the example in Figure 6. If the
user edits the code so that it reads ‘var y = 2;’, an event
is emitted showing that the mark ‘name’ has the value y and
the mark ‘value’ has the value 2. If the user edits the ex-
ample to read ‘z = 3;’ (removing the var keyword), then
the example becomes out of sync. If the helper later tries to
set the ‘name’ or ‘value’ marks, while it is out of sync, the
user is presented a warning asking for permission to over-
write their code, as shown in Figure 7. Helpers may not
further write code until the example comes back in sync or
the programmer gives permission for that piece of docu-
mentation to overwrite their code. Note that in the above
example, the keyword var could have been made optional
by enclosing it in a mark. This allows Codelet authors to
specify precisely which code is necessary and which code
can change.

Annotations
Annotations are augmentations of the coding environment.
Codelets provide annotations for highlighting code frag-
ments and for drawing arrows between helpers and code
fragments. To specify what should be highlighted or point-
ed at, annotations use mark IDs. The at-
tach_input_to_mark function used in Figure 6 (lines 19
& 20) automatically adds annotations to draw lines between

Figure 7. If the user edits the region of code attached to a Codelet so
that the helper becomes out of sync with the attached code, the Codelet
asks the user before the helper makes any code changes.

Figure 8. For consistency, Codelets have a standard mechanism for
displaying warnings with text and any number of buttons. Helpers can
take advantage of their semantic understanding of what their attached
example code is supposed to do to display warnings even if the code is
syntactically correct. This Codelet, for reading a file in Java, displays an
error because the programmer has not specified a filename.

2703

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

HTML input elements and the regions of code they ma-
nipulate, as illustrated in Figures 1 and 3.

Warnings
For the sake of consistency, Codelets have a standard
mechanism for displaying warnings as yellow text in the
margin of the Codelet (Figure 8). These warnings are dis-
played and cleared using JavaScript. Codelets do not, how-
ever, provide any standard mechanism for detecting warn-
ings, which is left as a job for individual Codelets. This is
because Codelet warnings are usually specific to the exam-
ple, rather than the programming language. There are many
cases where a Codelet’s example may be semantically in-
correct while being syntactically valid.

IMPLEMENTATION
We designed Codelets with the goal that any editor could be
augmented with the ability to display Codelets. Put another
way, multiple editors may be modified to be “Codelet-
enabled,” rather than having to create new editors from
scratch. In our implementation, we augmented ACE
(Ajax.org Cloud9 Editor), a code editor written for web
browsers in JavaScript, HTML, and CSS.

In order for an editor to become Codelet-enabled, it must
support a minimal API for communicating with the Codelets
backend system. First, it must support the ability to embed
custom web views that can communicate with the editor. In
our implementation each Codelet is an iframe, or an em-
bedded page that communicates with the editor using the
API described in the previous section. Second, the editor
must provide at least a minimal API for reading and modify-
ing code. Ideally it would expose the ability to override
standard copy and paste and text dragging operations so
that Codelets can be copied to the clipboard as well, as they
are in our implementation. Finally, the editor must provide
a mechanism for choosing how its code is formatted, to
allow the Codelet web views to “push” surrounding code
out of the way. In our implementation, we did this by dis-
guising the space used by any Codelet as a set of wrapped
lines, preserving line numbers.

Storing Codelets in Source Files
Another implementation consideration is deciding how
Codelets should be stored in source files across editing ses-
sions. In our implementation, the editor maps Codelet loca-
tions to files, meaning that if files were shared (e.g. with a
version control system) its Codelets would be lost. One
could imagine other storage alternatives, such as tracking
Codelets in a separate hidden file or with comments in the
source code.

INTERACTIONS THAT INFORM CODELETS
This research is informed by prior work in a number of do-
mains, outlined in the sections below.

Structured Editors
At their core, structured editors are editors that let pro-
grammers write code by directly manipulating the abstract
syntax tree, with the goal of allowing programmers to focus

on semantics rather than syntax [32]. Many structured edi-
tors also include interesting interaction techniques for in-
serting code blocks and augmenting documentation. Barista
[19], for example, demonstrates the possibility of having
media-rich annotations in a structured editor. Codelets and
Codelet-enabled editors provide developers with some of
the useful interactions possible in structured editors without
the obligation to change how they edit code. Additionally,
while structured editors require editor authors to build these
interactions, Codelets allow third parties to build them.

Quickly Inserting Code
Autocomplete, a feature of many IDEs for typed languages,
is optimal for highly localized reminder tasks, where the
user is searching for a particular function and does not need
documentation. Many editors — e.g., Dreamweaver,
Textmate, and Vim — have placeholder or snippet features
that allow custom templates for often-typed code to be
quickly inserted with a keyboard shortcut. Keyword Pro-
gramming [23] augments this by allowing template code to
be quickly inserted and customized with keywords. While
quick template insertion is one feature of Codelets, our fo-
cus is on maintaining a meaningful link between the insert-
ed code and its documentation.

Integrating Documentation into Editors
JavaDoc [21] is one of the most commonly-used editor-
documentation integration mechanisms. Whereas JavaDoc
is intended for documenting methods and classes statically,
Codelets are oriented towards documenting examples dy-
namically while being tightly integrated with the code they
document in the editor.

Additionally, several research projects have aimed to better
integrate web resources with code editors. CodeTrail [10]
and HyperSource [12] help programmers link source code
and web documentation resources. While we have a similar
goal, we take the approach of providing documentation
tools so that framework creators can write documentation
specifically for integration into the IDE. Whereas CodeTrail
[10], HyperSource [12], and Blueprint [2] take advantage of
the abundance of examples on the Web, Codelets focus on
enabling interactive specialized documentation written es-
pecially for inclusion in code editors.

Searching for Examples
Although search was not our focus in designing Codelets,
we recognize that the ability to search for useful examples
is fundamental to using any example system. Example min-
ing systems try to find example code that is useful to pro-
grammers. Prospector [24], for example, automatically
mines “Jungloids,” or commonly used code fragments and
uses context to find relevant Jungloids.

Other projects have focused on improving API documenta-
tion design. Apatite [8] helps users learn and understand
APIs by providing a new navigation interface. Jadeite [31]
uses information on API usage to make its documentation
easier to navigate. Additionally, it allows users of the API to

2704

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

add method templates that were not part of the original API.
Some development recommendation systems have applied
machine-learning techniques to help programmers automat-
ically complete method bodies or find example code that is
relevant to their projects [28].

Preventing Usage Errors
Codelets have an API for showing warnings when pro-
grammers might be using an API in the wrong way. This
feature was inspired by the idea of code contracts. Code
Contracts [16] allow API designers to programmatically
enumerate assumptions they make about code that uses
their API. Code contracts help prevent programmer errors by
warning them about improper usage of an API, sometimes
before compilation.

Unlike code contracts, the specification and warnings are
given by the example documentation, meaning that the lan-
guages or libraries that Codelets use need not be augmented
with code contracts.

Tools to Increase Program Readability
One main cognitive barrier to customizing examples is the
difficulty of building of mappings between what the pro-
grammer wants to create and the low-level primitives of
programming languages and libraries [11,22]. Knuth intro-
duced the idea of literate programming [18], which seeks to
allow programmers to write programs in an expository fash-
ion, looking at higher-level ideas and concepts instead of
always reading the low-level code.

Other research has addressed this problem by adding visual-
ization layers over existing languages [6,7], by providing
dedicated “builder” interfaces that are displayed separately
from code [26], and even by designing new programming
languages using HCI principles [27]. However, these tech-
niques require either interacting with the high-level lan-
guage or a low-level language (but not both), rather than
building up mappings from concepts to working code.
Codelets can help alleviate these problems by including
custom-tailored interactions that build mappings from high-
level concepts to low-level implementation details. The
Codelet in Figure 1, for instance, allows programmers to
customize the example code by directly editing the code or
by using an interactive widget. Changes made in either rep-
resentation are reflected in the other, providing users with
direct feedback that has been shown to be crucial in learn-
ing to program [14].

Lowering the Cost of Writing Documentation
One of the design goals of Codelets was to allow third par-
ties to write useful and interactive examples. While we
aimed to lower the cost of writing documentation by allow-
ing it to be written in API, we hope future tools might fur-
ther lower these barriers. DocWizards [1], for instance, al-
lows users to write documentation (in the form of wizards)
by demonstration.

CONCLUSION AND FUTURE WORK
We have presented a set of techniques for better integrating
examples into code editors with Codelets. The design of
Codelets was guided by the insight that anyone should be
able to write example code for code editors. While Codelets
explore some of the possibility for this, we believe our in-
sight opens up many avenues for interesting future research.

To start, we plan on exploring ways to better adapt exam-
ples to fit individual programmers’ styles — even some-
thing as trivial as matching their naming and spacing con-
ventions. More nuanced individual programming conven-
tions might also be supported. We are also thinking about
ways Codelets might be extended to work with examples
that have code distributed in chunks across different lines or
different files. For instance, a single Web snippet may re-
quire bits of HTML, JavaScript, and CSS that are not placed
in a contiguous block.

Another promising area for future work is in improving in-
editor search. One might, for instance, be able to point out a
piece of code and perform a search for any documentation
related to it. We are also exploring ways to make it easier to
create Codelets by, for example, creating a tool to convert
Web examples into interactive Codelets. Because Codelets
also have a semantic understanding about what particular
examples are for and how they have been customized, they
may also help in refactoring tasks like updating code for
new framework versions.

Finally, there are many interesting implications for learn-
ing. Although in our user study, Codelet participants’ self-
reported confidence in their knowledge of jQM was higher,
it would be interesting to see what types of examples help
programmers learn new libraries best. For example, com-
parisons may be made between static Codelets, interactive
Codelets, and “tutorial” Codelets that teach programmers
by build example code step-by-step.

While code examples are a valuable resource for program-
mers, the rich context surrounding examples is often crucial
for adaptation and integration. Codelets were designed with
the insight that a programmer’s interaction with an example
often begins when its code is pasted into the editor. Our
evaluation of Codelets suggests that it is valuable to main-
tain a connection between example code and related docu-
mentation throughout the example’s lifecycle.

ACKNOWLEDGEMENTS
We thank Mira Dontcheva, Brad Myers, our participants,
and the many researchers at Adobe and at Carnegie Mellon
who helped shape this work.

REFERENCES
1. Bergman, L., Castelli, V., Lau, T., and Oblinger, D.

DocWizards: A System for Authoring Follow-me Docu-
mentation Wizards. In Proc. UIST, (2005), 191–200.

2. Brandt, J., Dontcheva, M., Weskamp, M., Klemmer, S.R.,
and Francisco, S. Example-Centric Programming: Integrat-

2705

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

ing Web Search into the Development Environment. In
Proc. CHI, (2010), 513–522.

3. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M.,
Klemmer, S.R., and Francisco, S. Two Studies of Oppor-
tunistic Programming: Interleaving Web Foraging, Learn-
ing, and Writing Code. In Proc. CHI, (2009), 1589–1598.

4. Brandt, J., Guo, P.J., Lewenstein, J., and Klemmer, S.R.
Opportunistic Programming: Writing Code to Prototype,
Ideate, and Discover. In IEEE Software 26, 5 (2009), 18–
24.

5. Davies, S.P. Externalising information during coding activ-
ities: Effects of expertise, environment and task. In Empi
Empirical Studies of Programmers (1993), 42–61.

6. Davis, S. and Kiczales, G. Registration-Based Language
Abstractions. In Proc. OOPSLA Onward!, (2010), 754–
773.

7. Eisenberg, A.D. and Kiczales, G. Expressive Programs
Through Presentation Extension. In Proc. AOSD, (2007),
73–84.

8. Eisenberg, D.S., Stylos, J., and Myers, B.A. Apatite: A
New Interface for Exploring APIs. In Proc. CHI, (2010),
1331–1334.

9. Fischer, G., Henninger, S., and Redmiles, D. Cognitive
tools for locating and comprehending software objects for
reuse. In Proc. ICSE, (1991), 318–328.

10. Goldman, M. and Miller, R.C. Codetrail: Connecting
Source Code and Web Resources. In Proc. VL/HCC,
(2009), 223–235.

11. Green, T. and Petre, M. Usability Analysis of Visual Pro-
gramming Environments: A ‘Cognitive Dimensions’
Framework. Journal of Visual Languages and Computing
7, 2 (1996), 131–174.

12. Hartmann, B., Dhillon, M., and Chan, M.K. HyperSource:
Bridging the Gap Between Source and Code-Related Web
Sites. In Proc. CHI, (2011), 2207–2210.

13. Hartmann, B., Doorley, S., and Klemmer, S.R. Hacking,
Mashing, Gluing: Understanding Opportunistic Design.
Pervasive Computing 7, 3 (2008), 46–54.

14. Hoc, J.M. and Nguyen-Xuan, A. Language Semantics,
Mental Models and Analogy. Psychology of Programming
(1990), 139–156.

15. Hoffmann, R., Fogarty, J., and Weld, D.S. Assieme: Find-
ing and Leveraging Implicit References in a Web Search
Interface for Programmers. In Proc. UIST, (2007), 13–22.

16. Holland, I.M. and Thomas, B.M. Contracts: Specifying
Behavioral Compositions in Object-Oriented Systems. In
Proc. OOPSLA, (1990), 169–180.

17. Holmes, R., Cottrell, R., Walker, R.J., and Denzinger, J.
The end-to-end use of source code examples: An explorato-
ry study. In Proc. ICSE, (2009), 555–558.

18. Knuth, D.E. Literate Programming. CSLI Center for the
Study of Language and Information, 1992.

19. Ko, A.J. and Myers, B.A. Barista: An Implementation
Framework for Enabling New Tools, Interaction Tech-
niques and Views in Code Editors. In Proc. CHI, (2006),
387–396.

20. Ko, A.J., Myers, B.A., and Aung, H.H. Six Learning Barri-
ers in End-User Programming Systems. In Proc. VL/HCC,
(2004), 199–206.

21. Kramer, D. API Documentation from Source Code Com-
ments: A Case Study of Javadoc. In Proc. SIGDOC,
(1999), 147–153.

22. Lewis, C. and Olson, G. Can principles of cognition lower
the barriers to programming? Empirical Studies of Pro-
grammers, (1987), 248–263.

23. Little, G. and Miller, R.C. Keyword Programming in Java.
Automated Software Engineering 16, 1 (2009), 37–71.

24. Mandelin, D., Xu, L., Bodik, R., and Kimelman, D. Jun-
gloid Mining: Helping to Navigate the API Jungle. In Proc.
PLDI, (2005), 48–61.

25. Nykaza, J., Messinger, R., Boehme, F., et al. What Pro-
grammers Really Want: Results of a Needs Assessment for
SDK Documentation. In Proc. SIGDOC, (2002), 133–141.

26. Omar, C., Yoon, Y., Latoza, T., and Myers, B. Active Code
Completion. Ext. Abstracts VL/HCC, (2011), 261–262.

27. Pane, J.F., Myers, B.A., and Miller, L.B. Using HCI Tech-
niques to Design a More Usable Programming System. In
Proc. HCC (2002), 198.

28. Robillard, M.P., Walker, R.J., and Zimmerman, T. Rec-
ommendation Systems for Software Engineering. IEEE
Software 27, 4 (2010), 80–86.

29. Rosson, M.B. and Carroll, J.M. The Reuse of Uses in
Smalltalk Programming. ACM Transactions on Computer-
Human Interaction 3, 3 (1996), 219–253.

30. Stylos, J. and Myers, B.A. Mica: A Web-Search Tool for
Finding API Components and Examples. In Proc. VL/HCC,
(2006), 195–202.

31. Stylos, J., Faulring, A., Yang, Z., and Myers, B. Improving
API Documentation Using API Usage Information. In
Proc. VL/HCC, (2009), 119–126.

32. Teitelbaum, T. and Reps, T. The Cornell program synthe-
sizer: a syntax-directed programming environment. Com-
munications of the ACM 24, 9 (1981), 563–573.

33. Yeh, R.B. Designing Interactions that Combine Pen, Paper,
and Computer. Ph.D. thesis, Stanford University, Computer
Science Department. 2008.

34. Google Code Search. http://www.google.com/codesearch

2706

Session: Programming & Debugging CHI 2012, May 5–10, 2012, Austin, Texas, USA

