
 - 1 -

Creativity Support in Authoring and Backtracking
Brad A. Myers, Stephen Oney,

Human-Computer Interaction Inst.
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{bam, soney}@cs.cmu.edu

YoungSeok Yoon,
Inst. for Software Research

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
youngseok@cs.cmu.edu

Joel Brandt
Adobe Research

San Francisco, CA 94103
joel.brandt@adobe.com

ABSTRACT
The “Natural Programming” group has been working for 15
years on making it easier for all kinds of programmers to be
creative when writing software. Recently, one focus has
been enabling “end-user programmers” (EUPs) such as
interaction designers to more easily author interactive be-
haviors for the web. In a separate project, we are adding
features to a code editor to support “backtracking” — un-
doing operations to partially or fully restore the code to a
previous state — since creative exploration usually involves
both moving forward to new designs and going backwards
to retract some or all of the design that is not desired. In all
of these projects, we seek to measure both the usability of
our tools, and their effectiveness at fostering creativity.

Author Keywords
Interactive Behaviors; End-User Programming; Exploratory
Programming; Backtracking; Natural Programming;
Creativity.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Interaction styles; H.1.2 [User/Machine Systems]:
Software psychology; D.2.6 [Programming Environments]:
Integrated environments

General Terms
Human Factors; Design; Measurement.

INTRODUCTION
Buxton quotes Linus Pauling as having said: “The best way
to have a good idea is to have lots of ideas” [4, p. 121]. De-
sign education places much emphasis on this strategy [6]
and research suggests that exploring multiple ideas helps
improve creativity [2, 8]. Moreover, creativity theory sug-
gests the need to produce a plethora of ideas in order to
arrive at the creative ones, a concept called ideational flu-
ency [13]. Donald Schön, one of the most influential design
theorists [11], characterizes the creative process as a con-
versation with materials [32]. In this conversation, design-
ers advance the work by reflecting both in and on their ac-

tions, and by engaging with materials that specifically sup-
port conceiving and refining ideas as well as with the target
material a product will be made out of. Designers reflect in
action by evaluating and experimenting with what they are
working on while they are working on it. A similar observa-
tion was made by Rosson & Carroll when studying Small-
talk programmers: a key way in which programmers create
programs is to write some code, see if it does what is de-
sired, and if not, entirely or selectively remove part of what
they have created; a process they call “debugging into exis-
tence” [31]. When the process of trying out designs is em-
bodied in writing software, it has been called exploratory
programming [33] or opportunistic programming [3]. Such
explorations require both forward and backward moves:
forward to create new software, and backwards so the code
returns at least partially to the way it was previously, either
by removing inserted code or by restoring removed code.
We call such backward moves backtracking. Besides direct-
ly helping programmers remove unwanted edits, we claim
that programmers will feel more comfortable exploring if
they know they have effective tools for backtracking.

The Natural Programming Project [24] tries to make pro-
gramming easier by making it more natural, by which we
mean closer to the way people think about their tasks. One
way to define programming is the process of transforming a
mental plan into one that is compatible with the computer
[14]. The closer the programming language is to the devel-
oper’s original plan, the easier this refinement process will
be [12]. We have adapted a variety of HCI techniques to
help understand and evaluate how developers program and
use novel and conventional development tools, including
Contextual Inquiry field studies [19], surveys [25], heuristic
analysis and cognitive walkthrough [10], lab usability stu-
dies [9], paper prototyping [20], and A vs. B user studies
[17].

Over the years, a number of our tools have particularly fo-
cused on the issue of creativity, especially as it relates to
professional programmers and also “end-user program-
mers” (EUPs) [15], who are people who program in order
to achieve some goal other than the programming itself, for
example, interaction designers testing out an idea. Pro-
grammers and interaction designers often need to be crea-
tive, and it would be useful to have a way to measure the
extent to which their development tools enable creativity.

To appear in:

ECSE 2013: evaluation methods for
creativity support environments

Workshop at CHI’13, April 28, 2013, Paris, France.
Copyright © 2013 – Carnegie Mellon University

 - 2 -

Current measures of creativity that we have used are all
indirect – measuring other things that may be said to corre-
late with creative behavior. For example, in an early paper,
we measured the number of different designs that users
were able to create [18], and recently we have proposed that
measuring how quickly users can move from one design to
another would correlate with the success of the creativity
support. However, it would certainly be useful to have a
more direct measure of the level of creativity supported by
our tools. For example, we might compare our AZURITE
tool (see below) with a “preview” system in graphical edit-
ing tasks [34] or examine the tools with “sketch” like inte-
ractivity [35].

OVERVIEW OF OUR CREATIVITY SUPPORT TOOLS

Authoring
We have worked on many different kinds of authoring tools
that can be considered “creativity support environments”
(CSEs), at least for professional programmers and EUPs.
For example, we developed many interactive tools to enable
user interfaces to be created with little or no programming
by user interface specialists. Some examples are Peridot
[22] for creating controls (widgets like menus and scroll
bars), Gamut [21] for defining behaviors by example, Silk
[18] for sketching interfaces and having them automatically
converted into code, HANDS [29] which is a novel pro-
gramming language for kids, and Citrus [16] which is a
toolkit for creating user interfaces for structured data.

Our current project for authoring is called EUCLASE, and is
based on research on how interaction designers naturally

express user interface behaviors, such as how the objects on
the screen respond to the user [30]. We also studied how
designers collaborate and express their ideas [28]. We then
used these results to create a new JavaScript toolkit for
creating interactive behaviors for the web, called Con-
straintJS, which supports constraints combined with state
diagrams [27]. Now, we are working on an interactive tool
which combines a spreadsheet-like user interface with state
diagrams, which we feel will enable interaction designers to
more easily (and creatively) be able to author interactive
behaviors themselves [26].

Backtracking
There is a large body of work and many research and com-
mercial tools directed at making it easier for people to move
forward from their ideas to designs to implementations, but
there is surprisingly little support for directly helping
people explore multiple variations (besides sketching on
paper [4]). In particular, very little is available to help to-
day’s developers backtrack, even though developers report
that backtracking is often required [36]. For example, mod-
ern integrated development environments (IDEs) do not
utilize any of the sophisticated undo mechanisms that have
been investigated through the years (e.g., [1, 5, 7, 23]), and
only provide a simple linear undo model. As a result, de-
velopers cannot easily undo the changes that they made
some time ago, or changes that are interleaved with edits
that are still desired, but only can undo the most recent
changes in the command history. Also, when the developer
undoes several steps backwards and makes a new change
from that point, all the previously undone commands are

Figure 1: The current interface of AZURITE for the Eclipse IDE. The top window is the Eclipse code view, and the bottom

timeline visualization shows insert (green), delete (red) and replace (blue) operations for each of the files. A vertical gray line
divides the two consecutive editing sessions. The yellow vertical line at the right shows the current time. The user can select
certain operations (here shown with a yellow outline), either by clicking on them, or querying in the code window for all the

operations affecting a range of code, and then can selectively undo only those operations.

 - 3 -

discarded and cannot be redone, because the undo model
only keeps a linear list instead of a command history tree.
In our previous survey [36], programmers reported that they
use undo mostly to remove typos or repair minor mistakes
in the very last edits made. Another possible way to back-
track is to use a Version Control System (VCS), but this is
not always adequate: it only works if the user thought to
commit the desired version, which may not always be the
case, and it is often too heavy-weight for small experiments.
Furthermore, if the user has made edits that need to be re-
tained mixed in with the edits to be backtracked, neither
linear undo nor version control can be used.

We are developing a plug-in called AZURITE for the Eclipse
IDE, which enables users to more easily backtrack (see
Figure 1). It allows users to perform selective undo of only
the desired operations, so users can choose exactly which
operations should be undone. We address two main prob-
lems of providing selective undo in the context of text edit-
ing of code: first, we provide a way to deal with conflicts
when a later edit overlaps an earlier one, and to effectively
ask the user’s intent when the conflicts cannot be resolved
automatically. Second, we provide a novel way for users to
find the operations they want to undo using a timeline visu-
alization of the code editing history (see Figure 1). In addi-
tion, unlike other existing undo models, our selective undo
model allows users to select multiple edit operations at the
same time, which is very effective at minimizing the occur-
rence of unresolvable conflicts.

Although the timeline visualization provides a way to select
multiple operations, it becomes difficult to manually select
the right operations to undo as the history gets bigger.
Therefore, we are working on a sophisticated search me-
chanism to allow users to easily find the operations that
they want to undo using whatever they remember about
those operations. We already support what we found to be
the most desired operation [36]: users can search for all
edits performed on a particular area of code, and undo
them. We also allow users to find code which used to exist
but has subsequently been deleted. History search not only
helps the users to select the right operations to undo, but
also minimizes the irresolvable conflicts because the con-
ceptually-related edits are likely to be performed on the
same area of code, and thus they usually have conflicts only
among themselves. In the future, we propose to also support
other interesting ways to search the history, including to
find the times when a particular line, method, or class was
edited; to find the last time the application compiled with-
out error or was run without raising an exception; to find
when a particular editing operation was performed (e.g., “a
refactor using Extract Superclass”); etc.

Although currently implemented in the context of a code
editor, AZURITE should be directly applicable for any text
editor, such as Word or Pages. We feel that our backtrack-
ing ideas would also transfer to other kinds of editors as
well, including design programs like Photoshop, Illustrator

or even PowerPoint and Keynote, where users now need to
backtrack but have little support.

FUTURE EVALUATIONS
We have been building and evaluating our research proto-
types iteratively, with evaluation results driving the design
of future prototypes. Currently, the main focus of the evalu-
ations is whether the tools are usable by the intended au-
diences, and whether users are effective at performing the
tasks we are attempting to support. These evaluations use
conventional usability think-aloud and A vs. B lab studies.
In the future, we plan to deploy our prototypes to under-
stand how they are used in practice.

We would also like to measure the extent to which our pro-
totypes help users be more creative. With EUCLASE, we can
measure whether it helps designers create novel interactive
behaviors. With AZURITE, which records everything that
users do, we can have a direct measure of how often people
make alternative designs, and how often they backtrack.
However, both of these are indirect measures, so we are
interested in using other evaluation techniques and meas-
ures as well.

ACKNOWLEDGMENTS
Funding for this research comes in part from Adobe, in part
from the Korea Foundation for Advanced Studies (KFAS),
and in part from NSF grant IIS-1116724. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of Adobe, KFAS or the NSF.

REFERENCES
1. Berlage, T., “A Selective Undo Mechanism for Graphical

User Interfaces Based on Command Objects.” ACM
Transactions on Computer Human Interaction, 1994.
1(3): pp. 269-294.

2. Brandt, J., et al., “Example-Centric Programming:
Integrating Web Search into the Development
Environment,” in CHI'2010: ACM Conference on Human
Factors in Computing Systems, April, 2010. Atlanta, GA.
pp. 513-522.

3. Brandt, J., et al., “Opportunistic Programming: Writing
Code to Prototype, Ideate, and Discover.” IEEE Software,
2009. pp. 18-24.

4. Buxton, B., Sketching User Experiences: Getting the
Design Right and the Right Design. 2007, San Francisco,
CA: Morgan Kaufmann.

5. Cass, A.G. and Fern, C.S.T., “Modeling Dependencies
for Cascading Selective Undo.,” in IFIP INTERACT 2005
Workshop on Integrating Software Engineering and
Usability Engineering, 2005.

6. Cross, N., Design Thinking: Understanding How
Designers Think and Work [Paperback]. 2011, Berg
Publishers.

7. Cubitt, T., Undo-Tree.El Version 0.2 for Emacs. 2010.
http://www.dr-qubit.org/undo-tree/undo-tree-0.2.el.

8. Dow, S.P., et al., “Parallel Prototyping Leads to Better
Design Results, More Divergence, and Increased Self-

http://www.dr-qubit.org/undo-tree/undo-tree-0.2.el

 - 4 -

Efficacy.” ACM Trans. Comput.-Hum. Interact., 2010.
17(4): pp. 1-24.

9. Ellis, B., Stylos, J., and Myers, B. “The Factory Pattern
in Api Design: A Usability Evaluation,” in International
Conference on Software Engineering (ICSE'2007). 2007.
Minneapolis, MN: pp. 302-312.

10. Faulring, A., et al., “Agent-Assisted Task Management
That Reduces Email Overload,” in International
Conference on Intelligent User Interfaces: IUI'2010,
February, 2010. Hong Kong, China. pp. 61–70.

11. Forlizzi, J., Zimmerman, J., and Stolterman, E. “From
Design Research to Theory: Evidence of a Maturing
Field,” in International Assoc. of Societies of Design
Research Conference. 2009. Seoul, Korea: IASDR.

12. Green, T.R.G., “Cognitive Dimensions of Notations,” in
People and Computers V, A. Sutcliffe and L. Macaulay,
Editors. 1989, Cambridge University Press. Cambridge.

13. Guilford, J.P., Intelligence, Creativity and Their
Educational Implications. 1968, Robert R. Knapp.

14. Hoc, J.-M. and Nguyen-Xuan, A., “Language
Semantics, Mental Models and Analogy,” in Psychology
of Programming, J.-M. Hoc, et al., Editors. 1990,
Academic Press. London. pp. 139-156.

15. Ko, A.J., et al., “The State of the Art in End-User
Software Engineering.” ACM Computing Surveys, 2011.
43(3): pp. Article 21, 44 pages.

16. Ko, A.J. and Myers, B.A. “Citrus: A Toolkit for
Simplifying the Creation of Structured Editors for Code
and Data,” in UIST'05: ACM Symposium on User
Interface Software and Technology. 2005. Seattle, WA:
pp. 3-12.

17. Ko, A.J. and Myers, B.A., “Finding Causes of Program
Output with the Java Whyline,” in CHI'2009: Human
Factors in Computing Systems, April 4-9, 2009. Boston,
MA. pp. 1569-1578.

18. Landay, J.A., Interactive Sketching for the Early Stages
of User Interface Design. Ph.D. Thesis, Computer
Science Department, Carnegie Mellon University, 1996,
CMU-HCII-96-105.

19. LaToza, T.D. and Myers, B., “Developers Ask
Reachability Questions,” in ICSE'2010: Proceedings of
the International Conf. on Software Engineering, May 2-
8, 2010. Capetown, South Africa. pp. 185-194.

20. LaToza, T.D. and Myers, B.A., “Visualizing Call
Graphs,” in VL/HCC'2011: IEEE Symposium on Visual
Languages and Human-Centric Computing, Sept. 18-22,
2011. Pittsburgh, PA. pp. 117-124.

21. McDaniel, R.G. and Myers, B.A. “Getting More out of
Programming-by-Demonstration,” in Proceedings
CHI'99: Human Factors in Computing Systems. 1999.
Pittsburgh, PA: pp. 442-449.

22. Myers, B.A. “Creating Dynamic Interaction Techniques
by Demonstration,” in CHI+GI'87: Human Factors in
Computing Systems. 1987. Toronto, Ont., Canada: pp.
271-278.

23. Myers, B.A. and Kosbie, D., “Reusable Hierarchical
Command Objects,” in CHI'96: Human Factors in

Computing Systems, April 14-18, 1996. Vancouver, BC,
Canada. pp. 260-267.

24. Myers, B.A., Pane, J.F., and Ko, A., “Natural
Programming Languages and Environments.”
Communications of the ACM, 2004. 47(9): pp. 47-52.

25. Myers, B.A., et al., “How Designers Design and
Program Interactive Behaviors,” in 2008 IEEE
Symposium on Visual Languages and Human-Centric
Computing, VL/HCC'08, Sept 15-18, 2008. Herrsching
am Ammersee, Germany. pp. 185-188.

26. Oney, S., Myers, B., and Zimmerman, J. “Visions for
Euclase: Ideas for Supporting Creativity through Better
Prototyping of Behaviors,” in ACM CHI 2009 Workshop
on Computational Creativity Support. 2009. Boston, MA:

27. Oney, S., Myers, B.A., and Brandt, J., “Constraintjs:
Programming Interactive Behaviors for the Web by
Integrating Constraints and States,” in UIST'2012: ACM
Symposium on User Interface Software and Technology,
October 7-10, 2012. Cambridge, MA. pp. 229-238.

28. Ozenc, K., et al., “How to Support Designers in Getting
Hold of the Immaterial Material of Software,” in
CHI'2010: Human Factors in Computing Systems, April
10-15, 2010. Atlanta, GA. pp. 2513-2522.

29. Pane, J.F., Myers, B.A., and Miller, L.B., “Using Hci
Techniques to Design a More Usable Programming
System,” in IEEE 2002 Symposia on Human Centric
Computing Languages and Environments (HCC 2002), ,
September 3-6, 2002. Arlington, VA. pp. 198-206.

30. Park, S., Myers, B., and Ko., A. “Designers' Natural
Descriptions of Interactive Behaviors,” in 2008 IEEE
Symposium on Visual Languages and Human-Centric
Computing, VL/HCC'08. 2008. Herrsching am
Ammersee, Germany: pp. 185-188.

31. Rosson, M.B. and Carroll, J.M., “The Reuse of Uses in
Smalltalk Programming.” ACM Transactions on
Computer-Human Interaction, 1996. 3(3): pp. 219-253.

32. Schön, D., The Reflective Practitioner. 1983, London:
Temple Smith.

33. Sheil, B., “Environments for Exploratory
Programming.” Datamation, 1983. reprinted in in "Papers
on Interlisp-D," Sheil, B.A. and Masinter, L.M., eds.,
Xerox PARC Tech Report CIS-5.

34. Terry, M. and Mynatt, E.D., “Side Views: Persistent,
on-Demand Previews for Open-Ended Tasks,” in
UIST'2002: 15th annual ACM symposium on User
interface software and technology, 2002. ACM: Paris,
France. pp. 71-80.

35. Yamamoto, Y. and Nakakoji, K., “Interaction Design of
Tools for Fostering Creativity in the Early Stages of
Information Design.” International Journal of Human-
Computer Studies, 2005. 63(4-5): pp. 513-535.

36. Yoon, Y. and Myers, B.A., “An Exploratory Study of
Backtracking Strategies Used by Developers,” in
Cooperative and Human Aspects of Software Engineering
(CHASE'2012), An ICSE 2012 Workshop., June 2, 2012.
Zurich, Switzerland. pp. 138-144.

	Creativity Support in Authoring and Backtracking
	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	INTRODUCTION
	OVERVIEW OF OUR CREATIVITY SUPPORT TOOLS
	Authoring
	Backtracking

	FUTURE EVALUATIONS
	ACKNOWLEDGMENTS
	REFERENCES

