Addressing Misconceptions About Code with
Always-On Programming Visualizations

Tom Lieber Joel Brandt Robert C. Miller
MIT CSAIL Adobe Research MIT CSAIL
Cambridge, MA USA San Francisco, CA USA Cambridge, MA USA
tom@alltom.com joel.brandt@adobe.com rcm@mit.edu
ABSTRACT 2 calls function fetch(id, callback) {
We present Theseus, an IDE extension that visualizes run- :: j_[[;j:f.f:'m"" gl
time behavior within a JavaScript code editor. By displaying
real-time information about how code actually behaves dur- 2 calls st regnL'n-L;I;éa sl ;L:mc-n on {(data) {

ing execution, Theseus proactively addresses misconceptions
by drawing attention to similarities and differences between
the programmer’s idea of what code does and what it actu-
ally does. To understand how programmers would respond
to this kind of an always-on visualization, we ran a lab study
with graduate students, and interviewed 9 professional pro-
grammers who were asked to use Theseus in their day-to-day
work. We found that users quickly adopted strategies that are
unique to always-on, real-time visualizations, and used the
additional information to guide their navigation through their
code.

Author Keywords
Programming; debugging; code understanding

ACM Classification Keywords
D.2.5. Software Engineering: Debugging Aids

INTRODUCTION

Programmers are often wrong about what code actually
does [4, 6, 8]. This causes them to generate incorrect hy-
potheses while reading, writing, and debugging code, to
waste time and energy investigating false leads, and to intro-
duce new bugs while modifying code [8, 18]. Unfortunately,
code behavior is invisible in most programming environments
because few debugging interfaces are designed to be left on
and visible during all phases of programming. Instead, the
programmer must request information explicitly, for exam-
ple by opening an inspector, setting a breakpoint, or inserting
a print statement. This means that a faulty mental model is
corrected only by applying it during debugging. We believe
that programmers would benefit substantially from tools that
proactively work toward correcting misconceptions by dis-
playing information about execution sooner.

Our solution is a code editor extension called Theseus (Fig-
ure 1). Theseus visualizes the program’s run-time state using

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CHI 2014, April 26-May 1, 2014, Toronto, ON, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2473-1/14/04$15.00.

http://dx.doi.org/10.1145/2556288.2557409

1)s

stream.on{ , function () {
callback(, allData);
1)
1cal @ stream.on(, function (err) {
callback{err);
Log
fetch (stream.js:23) L0E:55.543 id=1 callback =p Function returnva

('data’ handler) (stream.js:27) L:08:55.567 data =p [Buffer:512] @ th

('data’ handler) (stream.js:27) L:08:56.038 data =p [Buffer:512] @ th

fetch (stream.js:23) L0@:55548 id=2 callback = Function returnva

® (‘error' handler) (stream.js:25) 1:08:56756 err = "connection failed"

Figure 1. Theseus shows call counts for every function, and an asyn-
chronous call tree allows the user to see how functions interact. In the
log below the code, users can see which call to fetch corresponds to the
failure without adding any debugging-specific code or re-executing their
program.

code coloring and marginal notes, allowing the programmer
to perceive that information unobtrusively as they read the
code. A function body that has not been executed at all is
shown with a gray background, and functions that have been
called repeatedly are labeled with the call count. The col-
ors and call counts update in real time so that the user can
watch them respond to the actions they take in their program.
A program trace is collected so that clicking on one of those
call counts can immediately add entries to a log showing the
arguments and return values of every invocation. Theseus or-
ganizes the log entries into a call tree that accounts for asyn-
chronous invocations (such as event handlers), allowing pro-
grammers to quickly answer many time-consuming reacha-
bility questions [8].

In order to test whether these tools would help correct mis-
conceptions more quickly, we ran two studies and deployed
Theseus as an extension to the Brackets IDE!. Participants
in the first lab study performed programming tasks with
and without Theseus. Theseus users identified the locations
where chains of callbacks broke down more quickly (often

"http://brackets.io

mailto:tom@alltom.com
mailto:joel.brandt@adobe.com
mailto:rcm@mit.edu
mailto:permissions@acm.org
http://dx.doi.org/10.1145/2556288.2557409
http://brackets.io

within seconds of opening a file) than users with just a break-
point debugger, and exhibited behaviors such as arranging
their desktop so that they could see their code while interact-
ing with their application. In the second study, professional
software developers used Theseus in their day-to-day pro-
gramming activities. We then interviewed them to see how
Theseus fit into their programming workflow.

The contributions of this paper are:

e An open-source debugging interface called Theseus that
answers reachability questions in the context of the pro-
grammer’s source code and exemplifies the always-on de-
sign principle

e 2 studies of how Theseus affects programmers’ behavior

e An open-source library called Fondue for collecting
JavaScript traces in real-time for always-on interfaces

In this paper we will introduce related work, describe the in-
terface and implementation, then discuss the results of our
two studies.

RELATED WORK

A live programming interface provides feedback to the pro-
grammer after every change about the new program’s behav-
ior [20]. Many interface ideas have arisen from live pro-
gramming research, such as McDirmid’s probes and traces
interface [12], Swift’s live code annotations for temporal re-
cursion [19], and Bret Victor’s demonstrations of a program-
ming environment with domain-specific visualizations [21].
Theseus shares aspects with all three of these interfaces,
but is designed to work with JavaScript in non-live environ-
ments. Block-based programming environments like Scratch
and Scheme Bricks highlight code as it is executed, which
can help users draw correspondences between the code and
program behavior, though that information does not persist,
like Theseus’s coloring and call counts [15, 5]. Theseus’s
coloring plays a similar role to continuous testing interfaces,
which provide the programmer feedback on their progress by
indicating which tests are passing and failing [16].

Reacher [9] answers reachability questions by presenting a
compact graph representation of the interactions between sev-
eral functions. Reacher uses static analysis to generate the
graph, whereas Theseus visualizes execution that has actually
occurred. Thus, Reacher can answer questions about what
can happen, and Theseus can answer questions about what
the user has just seen happen. Theseus’s log and Reacher
provide complementary views of the same kind of informa-
tion and it would be fruitful to combine them.

Whyline [7] is a debugging interface that users can ask ques-
tions like, “Why is this widget blue?” Whyline answers this
question by generating a slice of the program containing the
UI events and branches that led to the widget being blue.
Since Theseus visualizes the execution of individual func-
tions (which is usually completely invisible), it opens up a
world of information about which programmers could ask
questions with an interrogative debugger such as Whyline.

The idea of adding edges to the call graph (such as those The-
seus adds for asynchronous calls) to aid debugging goes back
to ZStep [10], an omniscient step debugger. A ZStep user
could step to the point when a given expression was evalu-
ated, to the next time the GUI changed, or to when a particu-
lar screen element was drawn. IntelliTrace [14] is similar in
that it allows users to index into a program trace by selecting
an event, such as a button click or an exception. In addition,
some effort has been made to generate JavaScript stack traces
that cross event boundaries [17], and more generally across
client-server boundaries [13].

Timelapse offers self-contained, fully-replayable traces of en-
tire web pages [1]. Timelapse integrates tightly with Web-
Kit browsers in order to apply low-level algorithms based on
virtual machine record/replay. Theseus’s instrumentation li-
brary, Fondue, is based on source rewriting. The overhead of
collecting the trace is much worse than that of Timelapse, but
Fondue is flexible and can be adapted to new contexts—such
as instrumenting Node.js or creating an instrumenting proxy
server—more easily as a result.

INTERFACE DESIGN

Theseus is designed to address three types of challenges that
programmers face: 1) cost of information: the inefficiency
of querying a debugger about program execution, 2) finding
code/behavior correspondence: identifying which code is re-
sponsible for a particular program behavior, and 3) under-
standing asynchronous control flow.

These areas of focus come from research into the types of
questions programmers ask while programming [8, 18], pri-
marily the first three categories of questions identified by
Sillito et al. (finding initial focus points, building on those
points, and understanding a subgraph) and reachability ques-
tions over a call graph with asynchronous links.

In this section, we demonstrate how Theseus’s always-on vi-
sualizations aid the programmer with these challenges by de-
scribing two sessions with Theseus.

Scenario: A Network Activity Indicator
In this scenario, Samantha is creating an animated widget to
appear during network operations on an HTML page.

A sanity check

Samantha starts by sketching the functions she’ll need: a con-
structor for the widget, and a callback function to instantiate
one when the page loads. After writing only the definitions
of those functions, Samantha opens the page in a browser.

As shown below, the way her code is displayed immediately
changes in two ways: code that has not executed is given a
gray background, and the number of times each function is
called is displayed in the margin to the left of each func-
tion. From these cues, Samantha infers that her syntax was
correct, that she registered her document-ready event handler
correctly, and that no exception was thrown because none of
the call counts are colored red.

0 calls function Activity() {
}

1 call $(document) .ready(function () {
s

The Brackets IDE will automatically reload the browser after
every save, so sanity checks like these are quick to make.

After writing some code to add the activity indicator to the
DOM (Document Object Model), she saves the file and again
gets immediate feedback that both functions were called and
neither threw an exception.

Understanding timing

Some time later, Samantha wants to update the DOM period-
ically to create the animated effect. Even before adding any
code to the function to update the page, she can judge whether
the timer is appropriately configured by how quickly the call
counts change in the sidebar.

1 call function Activity() {
var d = $()3
for (var i = 0; i < 10; i++) {
$(). text() .appendTo(d);
}
56 calls setInterval(function () {
}, 300);
return d;
}

The call count which currently reads ‘56’ increments by 1 every 300 mil-
liseconds, making it easy to pick out code responsible for the animation.

Verify that the timer clears appropriately

Samantha adds a conditional statement that should cancel the
timer when the activity indicator’s DOM element is removed
from the page. She verifies that it works correctly just by
watching the call counts: when the timer stops, the call count
for its handler will stop incrementing.

1 call function Activity() {
var d = $()
for (var i = 0; i < 10; i++) {
$S() . text() .appendTo(d);
}
10 calls var timer = setInterval(function () {
d.find() .prependTo(d);

if (!$.contains(document, d[0])) {
clearInterval(timer);

}
}, 300);
return d;
}

1 call $(document) .ready (function () {
var indicator = Activity();
$(document.body) .append(indicator);

1 call setTimeout(function () {

indicator.remove();
}, 3000);
b

After 3 seconds, the activity indicator was removed from the page and
the timer’s call count stopped at 10.

Discussion
Throughout the implementation of the widget, Samantha was
able to verify the behavior of her code even before it had any

output. The only time Samantha had to look at the web page
was to verify its appearance. Samantha never had to inter-
act with the debugger directly. No clicks or keystrokes were
made solely for the sake of debugging. This greatly reduced
the cost of the information she received, and made it easy to
recognize that the code responsible for the timer was behav-
ing as expected.

Retroactive Logging
In this scenario, Samantha is working on a Node.js program
to count the total size of all the files in a directory.

She starts with a sanity check. She verifies that she is us-
ing fs. readdir—the function for listing directory entries—
correctly by calling it with an empty callback. When she runs
the program, she sees that the callback is called, and by click-
ing on the call count, the log is populated with the values of
the arguments to the function. Convention dictates that the
first argument is an object encapsulating an error if there is
one (so it being null is a good sign), and expanding the array
allows her to see that the files she expects to find are there.

1 call function du(path, callback) {
1 call fs.readdir(path, function () {
b
}
0 calls du(, function (size) {
console.log(, size);
1)
Log
('readdir’ 10:5531.320 arguments[0] arguments[1] =
callback) (du.js:4) =null [Array:16]
0=".gitignore"
1="Gemfile"

2 ="Gemfile.lock"
3="README.rdoc"

A —"DALAELAN

Samantha continues coding, running the program periodi-
cally to verify that the call counts make sense and that no
exceptions are being thrown. She eventually notices a dispar-
ity: the add function, which gathers results, is being called
fewer times (84) than the function that iterates over directory
entries (91).

84 calls var add = function (size) {
totalSize += size;
if (++count === totalCount)
callback(totalSize);
1

42 calls fs.readdir(path, function (err, filenames) {

totalCount = filenames.length;

91 calls filenames.forEach(function (filename) {

var childPath = path + + filename;

91 calls fs.stat(childPath, function (err, stats) {
if (stats.isDirectory()) du(childPath, add);
else if (stats.isFile()) add(stats.size);

b
b
b

She is faced with a difficult reachability question: find calls
to the filename iterator callback that do not result in a call to
the add function—either directly, or asynchronously.

Breakpoints don’t work here because she cannot step
into the fs.stat callback, and anyway there would
be 91 instances to step through. Naively adding
log statements like console.log("in iterator") and
console.log("in add") wouldn’t work because it
would be very difficult to find corresponding entries. Her so-
lution is to use Theseus’s log.

She clicks the call count next to the file entry iterator callback
and the call count next to the add function. A log appears that
looks like this:

o (‘forEach’ callback) (du.js:12) 4:06:28.610 filename ="app" arguments[1] =5
o ('forEach’ callback) (du.js:12) asyne 4:06:28.623 filename ="assets" argur
@ (‘forEach' callback) (du.js:12) async 4:06:28.639 filename ="images"
o ('forEach’ callback) (du.js:12) asyne — 4:06:28.653 filename ="rails.pi
B add (du.js:5) AsYNEC 4:06:28.654 size = 6646 Backtrace >
B add (du.js:5) 4:06:28.654 size = 6646 Backtrace >
[} (‘forEach’ callback) (du.js:12) asyne 4:06:28.639 filename = "javascripts"
o ('forEach’ callback) (du.js:12) asyNne 4:06:28.653 filename ="applici
B add (du.js:5) AsyNe — 4:06:28.654 size =641 Backtrace >

W add (du.js:5) 4:06:28.654 size =641 Backtrace »

Finding calls to the iterator callback that don’t eventually call
the add function can now be done by skimming the log, us-
ing the glyphs’ shapes or colors, the names of the functions,
or the shapes of the log entries themselves (add takes fewer
arguments, so its lines are shorter). The desired log entries
happen to be clustered here:

o (‘forEach’ callback) (du.js:12) ~ 4:06:28.613 filename ="tmp" arguments[1] = 1!

o (‘forEach’ callback) (du.js:12) psynNc — 4:06:28.628 filename ="cache" a
[) ('forEach’ callback) (du.js:12) asyNe 4:06:28.644 filename ="assets"
o (‘forEach’ callback) (du.js:12) psyNc 4:06:28.644 filename ="sass"

[) (‘forEach’ callback) (du.js:12) asyne — 4:06:28.629 filename ="pids" arg

o (‘'forEach’ callback) (du.js:12) asynNe 4:06:28.629 filename ="sessions"

o (‘forEach’ callback) (du.js:12) async 4:06:28.629 filename ="sockets"

They correspond to the empty sub-directories of the tmp di-
rectory of a Rails project. When she adds a check for empty
directories, the add function’s call count jumps to 140. She
clicks the du callback function’s call count to see the final
answer.

Discussion

Samantha answered several more common programming
questions (what are the arguments to this function? what are
the values of the arguments at run-time? how is control (not)
getting from here to here?), including a difficult-to-answer
reachability question involving recursive asynchronous func-
tion calls.

In addition to answering questions, the always-on features of
the interface provide information scent that Samantha uses for
sanity checks and identifying a silent bug that would not have

Module
Loading
oadin Node-theseys WebSocket

Brackets +
Theseus
Node.js

HTTP Requests
v Chrome Remote Debugging API

Instrumenting
HTTR Proxy

Figure 2. System overview. To instrument Node.js code, node-theseus
hooks into the Node.js module loader to pre-process files with Fondue.
To instrument code in the browser, HTTP requests are redirected to
a proxy server. To read the Node.js trace and execute queries, node-
theseus connects to Theseus via a WebSocket. Browser traces are read
by connecting to Chrome using Chrome’s Remote Debugging Protocol.

been otherwise caught without a test suite [3]. Though the
information is always present, the ambient display heuristics
of Mankoff, et al. do not indicate any obvious deficiencies of
Theseus’s always-on features and, as described in the coming
evaluation section, programmers find a variety of ways to use
that information [11].

IMPLEMENTATION

Theseus consists of an extension for the Brackets editor, two
modules that the extension uses to communicate with Chrome
and Node.js, the JavaScript instrumentation library called
“Fondue”. See Figure 2 for a graphical overview. The compo-
nents are described briefly in this section, and their complete
source code is available online?.

Fondue, the JavaScript instrumentation library

Fondue transforms JavaScript source code to record a trace of
its execution to a global trace object. Functions are changed
to report the arguments they receive, the values they return,
and other information. This information is used to build a
call graph as the code executes.

The call graph that Fondue builds also contains edges for
asynchronous function calls. For example, in the code be-
low, foo schedules bar to be executed 1,000 milliseconds
later. There is no direct call chain connecting foo and bar,
which is why a programmer could not step from foo into bar
in most JavaScript debuggers.

function foo() {
setTimeout (function bar() {}, 1000);
}

Fondue creates edges from an invocation of foo to every in-
vocation of bar that results from it. To make this work, Fon-
due alters bar’s function definition so that when it is evalu-
ated, the invocation at the top of the stack (in this case, f00)
is recorded in the closure. That invocation is regarded as the
function’s asynchronous caller. Then, when no synchronous
call chain connects bar to another function in the log, asyn-
chronous call chains will be used instead if they exist. An

Theseus: https://github.com/adobe-research/theseus
Fondue: https://github.com/adobe- research/fondue

https://github.com/adobe-research/theseus
https://github.com/adobe-research/fondue

‘async’ flag is displayed in the child entry in the log when
this happens.

Mutability

Since objects in JavaScript are mutable, if the trace stored
only a reference to function arguments or return values, their
values might change by the time they were requested by the
debugger. To protect against this, Fondue makes a shallow
clone of all objects that it stores. Memory use and accuracy
can be balanced by adjusting the depth of the copy operation,
which is currently set to 1 for objects and 2 for arrays (so that
objects within arrays will be cloned).

Querying the program trace

When Fondue rewrites JavaScript to add the instrumentation
hooks, it also prepends the definition of a global object to re-
ceive the trace data. That global object contains methods for
accessing information such as the locations of function defi-
nitions in all loaded files, the number of times that functions
have been called, and the log entries corresponding to a given
query. The functions are designed to be polled so that the con-
sumer can control the refresh rate, which for Theseus is about
10 Hz. The simple JSON API and polling model make it easy
to use Fondue in various contexts, such as those described in
the next two sections.

Debugging server-side Node.js code

The user runs their code with the command node-theseus
app.js instead of node app.js. node-theseus installs it-
self as a pre-processor of all JavaScript code that is loaded
into that Node.js process. From then on, all code is instru-
mented with Fondue before being executed. node-theseus
then opens a WebSocket server to listen for a debugging con-
nection from Theseus. The WebSocket server simply applies
the deserialized messages as arguments to functions on the
trace object, then sends the return value back as JSON.

Debugging client-side code in Chrome

Theseus starts a web server that serves files from the user’s
project directory, using Fondue to process any JavaScript em-
bedded in HTML or served as .js files. When the user
opens a web page from that server, Theseus connects to that
Chrome window using the Chrome Remote Debugging Proto-
col, which supports evaluation of arbitrary JavaScript expres-
sions on the page and receiving the return values as JSON?.

EVALUATION 1: LAB STUDY

We designed the first study to determine whether an effect
on programmers’ behavior using our interface could be dis-
cerned, and to observe how well programmers could use our
always-on interface and log tool in a handful of typical pro-
gramming scenarios. We anticipated that the call counts and
reachability code coloring would allow users to find corre-
spondences between code and program behavior quickly, and
would allow users to tell at a glance where chains of callbacks
were breaking down.

3https://deve'l.opers.google.com/chrome-developer-tools/
docs/debugger-protocol

Prog. JS

Subject | Age | Gender | Ability | Ability Uses JS
S1 24 M ce@es | cocc@ Daily
S2 23 M IRY TR ERRRY B Daily
S3 20 M +e@- | --@-+ | Few days/wk.
S4 29 M ser.@ | +-+0- | Few days/wk.
S5 24 M sec.@ | +-+@. | Few days/mo.
S6 21 M sec-@ | --@-+ | Few days/mo.
S7 39 M ses.@ | --@-+ | Notrecently

Table 1. Participants of Evaluation 1. Programming Ability and
JavaScript Ability are on a 5-point scale, with 1 on the left labeled
“Novice”, and 5 and the right labeled “Expert”.

In this study, we focused on three research questions regard-
ing three types of programming tasks:

RQ1. How would programmers find correspondences be-
tween code and program behavior with Theseus?

RQ2. How would programmers use Theseus to find where
chains of callbacks break down?

RQ3. Would programmers use Theseus’s log to sort through
tangled control flow problems?

Methodology

We recruited 7 participants, described in Table 1, to a 90-
minute lab study. Subjects were required to have JavaScript
programming experience. They were given 5 programming
tasks: two 20-minute tasks and three 5-minute tasks. To fa-
cilitate within-subjects comparison, each participant was as-
signed to the Theseus or control condition for each task inde-
pendently (but always with 2 tasks in one condition and 3 in
the other). They performed the tasks on a computer we pro-
vided while their screen was recorded and an observer took
notes. Subjects completed all of their control tasks first us-
ing CDT (Chrome Developer Tools), then all of the Theseus
tasks (during which CDT were disallowed). Although The-
seus’s functionality could not entirely replace CDT, we ex-
pected that programmers would use it exclusively if under
time pressure and given the choice. Thus, we disallowed CDT
in the experimental condition to maximize the available time
to observe subjects using Theseus.

We put together five programming tasks which would allow
us to test our hypotheses two of which were longer prob-
lems with more involved solutions, and three short tasks from
which we had hoped to gather timing data:

A. Canvas Painter (20 minutes). Subjects were given the
source code for a browser-based drawing site with approxi-
mately 2,000 lines of JavaScript spread across 8 files. They
were asked to fix a bug where a line-painting operation
worked if the user clicked the start and end points, but not
if they dragged the mouse.

B. du (20 minutes). Subjects were given the skeleton for a
Node.js command-line tool for calculating the total size of
all files in a directory and asked to complete it. They were
asked to use only the asynchronous filesystem API calls.

C. Laggy AJAX UI (5 minutes). Subjects were given a web
page with 25 lines of JavaScript for a web page that down-

https://developers.google.com/chrome-developer-tools/docs/debugger-protocol
https://developers.google.com/chrome-developer-tools/docs/debugger-protocol

Subj. | A B C D E Ease Would | Would

of Use Use Recom.
S2 . . v v V | cee@¢ | @ecee | @ecce
S7 B o v . V | ce@ee co@e o cese@®
S5 . . v v | Vv coe@e | co@es ceeec@®
S1 . . v v . cee@e cee@e coe@e
S6 . . v . . ceee@ | coce@ | coc@e
S3 v 9 v . v coe@¢ | coec@ | soce@
S4 Vv v 7 V | V| cee@e | ceee@ | cocec@

Table 2. Summary of study results. The cells in the columns labeled A—E
contain v if the subject successfully completed that task. The cells are
shaded blue if the task was done with Theseus. The correctness of S3’s
solution for task B was unclear, so that cell contains a question mark.
Ease of Use, Would Use, and Would Recommend are on a 5-point scale,
with the lowest agreement rating of 1 on the left end and the highest
agreement rating of 5 on the right end.

loaded JSON from the server and displayed it in a popup.
Subjects were asked to determine why it took so long for
the popup to appear. The solution was a delay hard-coded
into the server.

D. Faulty Auto-Complete (5 minutes). Subjects were given
the code for both the server (80 lines of Node.js) and client
(63-line HTML file with embedded JavaScript) of a web
page that showed auto-complete search results from an ad-
dress book. Subjects were asked why the results never dis-
played. The problem was a logic error on the client while
processing the results.

E. Real-Time Chat (5 minutes). Subjects were given the
code for the server (33 lines of Node.js) and client (31 lines
of JavaScript on a web page) of a real-time chat site. Sub-
jects were asked why messages from one window did not
appear in the other. The problem was that the message
name on the client and server was mis-matched.

The source code for all tasks is available online®.

All of the tasks except B required the user to discover corre-
spondences between code and behavior on a web page. Be-
cause the code was broken in some way in tasks A, D, and
E, users were forced to validate many assumptions they made
about the code. Task B was chosen because it exemplified
tangled asynchronous control flow. Task E was selected be-
cause it involved broken callback chains.

Each subject was given the At the conclusion of the study,
we verbally asked five questions regarding their opinion of
Theseus.

Results

The results of the study are summarized in Table 2. We found
no statistically significant relationships between participants’
success rates and the tools they used. A chi-squared test found
no relationship between using Theseus and the participant’s
ability to complete the tasks successfully (x?(1, N = 34) =
119,p = 0.73).

RQ1: How might programmers find correspondences be-
tween code and program behavior with Theseus?

“https://github.com/alltom/theseus-lab- study- files

Participants frequently sought code correspondences using
Theseus by keeping the call counts and code coloring on the
screen as they interacted with the program they were working
on. They were pleased with how much information they could
absorb this way, an experience S1 described like this: “[The-
seus] feels really interactive. [As opposed to breakpoints], it’s
more of a ‘watch and see what happens’ thing, which I like.”
This behavior was not observed during Tasks B or E, likely
because Task B involved writing a non-interactive command-
line tool and the problem in Task E resided in the logic of
a single function. However, during Task A, S1 and S3 used
this strategy many times (6 times and 3 times, respectively)
during the task. Four of the six participants used this strategy
during Tasks C and D. The only participants who did not use
this strategy on Tasks C and D were S2 and S4, likely be-
cause they spent their first 20 minutes with Theseus working
on Task B, the non-interactive command-line tool.

There was some disagreement about whether the call counts
were useful for finding correspondences when the user had no
idea where to begin. S5 said, “how the call counts changed
live when I interacted with the application ... was especially
useful for Canvas Painter because it was a lot of source code
and I didn’t really know where to start.” As a result, S5’s
rating of whether they would use Theseus outside the study
depended on the size of the project: rated 4 out of 5 if the
code base is large, but only 1 out of 5 if the code base is
small. S1 had the opposite opinion, stating, “I felt like it was
the least useful when I wasn’t sure where the problem was.
So in the canvas thing, I didn’t know where the issue was, and
there’s not much of a global scope with Theseus. ... When I
didn’t know where to start, there was no way to find a global
call stack and identify candidate starting points. ... [In short,
Theseus is] more useful on a narrow scope, less useful on a
global scope.”

Participants were interested in the time at which the call
counts changed if they were interacting with their applica-
tion, but also the total number. A changing call count could
alert the programmer to surprising or revealing information,
such as when S3 watched the call counts during Task A. At
one point, S3 thought aloud, “I get 2 mouse up actions [every
time I click]. Huh.” S5 noted that they had become fixated on
a handful of functions while trying to narrow down the loca-
tion of some strange behavior because “it seems weird to me
that I get 2 mouse ups every time I click, while I only get 1
mouse down. ... I’d expect the call counts to be the same for
both of them, but they’re not.” S4 and S6 also used the fact
that a function was called 17 times as verification that it was
being called once for each file in the directory during Task B,
since they had checked that there were 17 files.

The call counts also turned out to be useful for verifying that a
code change had had the desired effect. In S4’s case, the fact
that their change caused a function to be called a different
number of times was encouraging. The call count seemed a
reliable enough indicator for checking that the new behavior
was correct that they performed no further tests.

RQ2: How might programmers use Theseus to find where
chains of callbacks break down?

https://github.com/alltom/theseus-lab-study-files

Finding where chains of callbacks break down is an important
subtask of finding code correspondences. In JavaScript, func-
tions typically cannot block while waiting for the result of an
I/O operation, which forces the programmer to split computa-
tions into multiple callback functions, with no guarantee that
control will flow successfully from one function to the other.

We noted several points during the study when participants
using Theseus were able to quickly, sometimes immediately,
locate the cause of a broken call chain, using the code col-
oring and call counts. In one instance, S4 opened a source
file and was immediately drawn to a network event handler
that had never been called, becoming suspicious because it
looked like a handler that should have fired several times if
the page had been working correctly. This was in contrast to
S3’s experience using a breakpoint debugger, in which they
set breakpoints and reloaded the page three times before they
finally determined how much of the code had actually exe-
cuted.

RQ3: Would programmers use Theseus’s structured log to

sort through tangled control-flow problems?

S4 named the log as Theseus’s most useful feature, saying
that Theseus is most useful “if you have recursion problems,”
referring to Task B in which his solution involved recursive
asynchronous operations. S3 dubbed the call counts “auto-
matic silent breakpoints.” S1 compared the log to typical log
output, saying, “[Theseus] is a lot more focused ... with con-
sole.logs it’s global. ... [With Theseus] you can pick the scope
you want to look at on the fly.” S4 summarized his opinion of
the log like this: “It gives you what you would do if you were
really careful and did console.log every function.”

S4 would often click the call counts for several functions at
once, saying, “all the time, the thing that I wanted to do first is
select all the functions and then see the whole tree.” Showing
the asynchronous call tree for all the functions of interest in
the file helped him to locate the points of interest. He cited
the lack of a ‘Select All Pills [call counts] in File’ command
as the reason he rated Theseus’ ease of use as 4/5 instead of
5/5. S6 felt similarly, at one point saying aloud, “These are
the four functions that are interacting,” and without pausing,
enabling the call counts for those four functions to see how
they related.

Discussion

Users seemed to integrate the call counts and code coloring
displays into their programming flow as was demonstrated
by the widespread use of the side-by-side strategy. We did
not see any clear evidence of whether call counts can help
find code correspondences in a large, unknown code base, but
users used them successfully in several different ways when
the search space was small. We learned that the total num-
ber of calls, the differences in the total over time, and the
relationships between call counts of different functions are
all relevant to programmers, and observed situations in which
each was used. We noted that participants had to memorize
call counts that were separated by time or space, which soft-
ware could have helped with. Participants also desired insight

into activity throughout the project and not just the code that
was visible on the screen.

Participants responded favorably to being able to add entries
to the log without restarting their program, and used the log’s
call tree structure to see how several functions interact. The
fact that asynchronous edges were used to build the call tree
did not play a large role in participant’s experiences.

EVALUATION 2: INTERVIEWS

Programmers in the last study seemed to perform about as
well with Theseus as they did without, so we decided to look
more closely at the behaviors we expected would contribute
to their greater success when using Theseus, primarily usage
of the increased information scent in the code, from which we
expected an increased ability to draw code correspondences.
We were also interested in whether programmers would adopt
Theseus if they had more time to become better at using it.

Methodology

We recruited a team of nine professional JavaScript program-
mers who work on a code base of about 80,000 lines to par-
ticipate in a week-long study. The participants were all male.
Because they were professional programmers, the subjects in
this study were significantly more experienced than the uni-
versity students in the previous study. Subjects received $25
as compensation.

We introduced Theseus to the study participants at a group
meeting and encouraged them to use Theseus for one week.
We asked them to document a programming problem in the
next week for which Theseus was or was not useful, and to
save a snapshot of the code at that point in time. At the end
of the week, we conducted hour-long semi-structured inter-
views with each participant. Each interview was comprised
of two parts: First, we asked the participant to walk through
the problem they documented, as well as their solution. Sec-
ond, we asked partitipants to complete the Canvas Painter
programming task from the previous study. Subjects were in-
structed to use whatever programming tools they were most
comfortable with. However, if they did not choose to use The-
seus on their own, we asked them near the end to continue
working with Theseus instead of their preferred tool.

In this study, we evaluated two hypotheses about how always-

on visualizations might aid programmers in debugging tasks:

H1. People will notice errors or oddities for investigation.

H2. People will locate the code responsible for a particular
behavior more accurately/confidently.

Additionally, we evaluated three hypotheses regarding the
overall perception of always-on displays:

H3. People will verify code behavior by running it, to take
advantage of always-on displays that display runtime in-
formation.

H4. People will feel like they waste less time interacting with
debugging tools with always-on displays active.

HS. People will want more always-on displays.

Theseus Use Pre-Interview (self-reported) Participants
<15 minutes S23, S26
< 1.5 hours S22, 825, S27
>3 hours S20, S21, S24, S28

Table 3. Each subject’s self-reported time spent using Theseus before
the interview.

Finally, we were interested in gaining a qualitative under-
standing of how always-on displays fit into a programmer’s
workflow, namely 1.) the down-sides that programmers
found, such as distraction and information overload, and 2.)
the situations when they were found to be appropriate, help-
ful, or preferred.

A prompted think-aloud protocol was used, with the inter-
viewer’s prompts guided by the hypotheses. That is, when a
subject seemed to be performing a relevant act, such as read-
ing code, the interviewer would elicit the participant’s justi-
fication for his current actions. We made a screen and au-
dio recording of each interview. The audio was transcribed
by one researcher. Then, the transcripts were coded for rel-
evance to the above hypotheses by five researchers (one of
whom was the interviewer).

The observer’s notes from the interviews were broken into
1,611 fragments of about one sentence each. The fragments
were loaded into Frenzy [2], a crowd work tool that the coders
used to tag each fragment with the research questions to
which it was relevant (if any). Each coder voted those tags up
or down in the case that the fragment had already been cat-
egorized. The results sections were written by summarizing
those categorized piles. Since coders did not work indepen-
dently, inter-rater reliability was not measured.

Results

Subjects spent varying amounts of time using Theseus during
the week between its introduction and their interview. The
times are summarized in Table 3. The evidence related to
each of the hypotheses is presented under each of the head-
ings below.

H1. People will notice errors or oddities for investigation
Code coloring affected the reading process of the program-
mers. S24 was drawn to a particular section of unexecuted
code and read it to figure out whether it should have executed,
according to how he thought the code worked. S25 skipped
reading portions of a file, saying, “Okay, nothing called in
this.” However, his attention was drawn to code that had been
called even if it was not related to the code he was attempting
to locate. S20 ignored the coloring and read code that The-
seus marked as unexecuted to understand the behavior of the
page, despite knowing that unexecuted code could not have
had any effect.

During an explanation, S21 described how a certain situa-
tion could not occur because a certain function wasn’t being
called. He checked the source and discovered that actually the
function was being called, which led to further exploration
and a revised explanation.

Call counts were effective in revealing oddities or confirm-
ing correct behavior. S20, S21, S24, and S25 encountered
instances where the absolute number of calls to a function
drew their attention to a problem or an aspect of the code that
they did not yet understand. S20 noticed a call count while
forming a hypothesis about the code and used it to inform
his thinking, saying, “Hmm, this is only called one time ...
does that mean the ... clearing the drawing is not another
drawing ...” S21 had his attention drawn to call counts that
were surprisingly high, which allowed him to make a guess
at what the code was for, saying “This was called a bunch,
319 times... maybe they’re simulating dragging.” S24 used
Theseus on a project that loaded 100 images asynchronously
and noted that “img.onload is stopping at 100. That’s good,
that’s perfect.”

The differences between call counts also proved important.
S21 noticed that a callback was occurring twice every time
he performed an action on the page, instead of only once as
he had expected. Both S24 and S27 found bugs in their re-
spective applications when they noticed that a pair of func-
tions that should have been called the same number of times
actually had different call counts. In S24’s case it was the
start and end of a callback chain, and for S27 it was a pair of
mouse-down and mouse-up handlers.

The colors of the call counts were occasionally useful as well.
S28 noticed the red coloring of a call count that indicated
an exception in the function he was reading, and stated that
he had not noticed the exception when it was printed to the
console.

H2. People will locate the code responsible for a particular

behavior more accurately & confidently

Subjects used total call counts, changes in call counts, and
lack of calls to make informed guesses about what code was
for. S21, S23, and S24 used the side-by-side technique to ver-
ify that they understood what the code they were looking at
was responsible for the behavior they thought it was. S21 was
satisfied with weak evidence in one case, saying, “So this was
called 7 times. ... Seems about right. I didn’t draw that many
things.” In the process of watching call counts change for one
function, S21 noticed that the mouse-up handler nearby was
being called more times than expected. S23 used the lack of
changes to a call count to determine that they were incorrect
about which handler was used for a particular action. When
reading a screen full of potential handlers for an event, S20
used the code coloring to decide which was the one he was
looking for—it was the only one that wasn’t gray.

S26 adapted a trace comparison strategy he was used to using
with log statements to the information available in Theseus.
S26 wished to compare what happened in the code when he
triggered the bug with what happened when he performed the
same task in a way that did not trigger the bug. To do so, he
reset the call counts by reloading, performed the task in one
way, observed the counts, then repeated those steps with the
alternate means. The process was tedious, but the difference
in the call counts gave him an idea of where to look. S20 and
S25 found that Theseus would have been more helpful with

locate responsible code if it visualized activity at the project
level.

H3: People will verify code behavior by running it instead of

reading and guessing

Subjects did not activate a debugger or Theseus until they
got stuck. Upon starting the Canvas Painter task, all subjects
began by skimming the source code without the aid of any
always-on displays. The task was to change the way the page
reacted to mouse events (specifically the end of a drag), so
subjects gravitated toward mouse-related code. S21 started
by searching for ‘click’ but the rest just skimmed files that
had suggestive names for code that looked like it contained
mouse event handlers. 4 of the 9 subjects said something like
“familiarize myself with where all the code is” for this step
(526’s words). S22 went so far as to say, “I try to stay out of
the debugger as much as possible because it’s a time suck.”

Three subjects eventually ran the code as part of the initial
code location step. S23 used Chrome’s event breakpoints to
have the step debugger stop every time JavaScript code ran
in response to a click event. S24 and S27 ran Theseus to tell
which of several mouse handlers was the one they should be
interested in. S27 explained that if he didn’t have Theseus,
he would probably spend more time just reading the code,
since breakpoints interrupt streams of mouse events, and that
adding log statements is tedious.

H4. People will feel they waste less time with always-on tools
The interviews revealed relatively little evidence about per-
ceived or actual time-wasting. S20 observed that Theseus’s
ability to associate each callback with the invocation that cre-
ated it was very hard to accomplish with other debuggers,
and perceived it as a time-saver. S23 felt that the “biggest
JavaScript debugging time suck” was determining why an
event handler wasn’t being called, and Theseus answered
that question more efficiently than inserting log statements
by hand. However, S23 and S25 had to wait for Theseus to
render a large group of log statements once each.

H5. People will want more live displays

4 subjects (S22, S25, S27, and S28) expressed interest in
more always-on displays, usually as extensions to Theseus’s
current interface. S22 wished for Theseus to show the time
spent in every function, S22 and S25 wanted the file-level
counterpart to the function-level call counts, and S27 and
S28 wanted information about the state changes on individ-
ual lines.

Subjects S20 and S21 preferred step debuggers to Theseus.
S20 felt strongly that breakpoint debuggers were more natu-
ral. S21 switched away from Theseus to Chrome’s step de-
bugger, saying “I can’t quite see ... how that influences which
conditional we’re going down,” and that the “[step debugger]
mental model is easier to understand.” S21 pointed out that
with a step debugger, he could also watch the web page up-
date as he stepped.

Downsides of always-on displays

Two subjects experienced information overload when inter-
acting with the log. S23 said that showing all of the argu-
ments and return values simultaneously made him unable to
parse any of it. S25 simply noted that there was a lot of in-
formation which he did not need. On the other hand, S22
appreciated that the log showed a lot of data at once.

When do programmers find Theseus to be helpful?
Breakpoints interfered with reproducing bugs related to
mouse gestures, but Theseus did not. S23 and S24 chose to
use Theseus instead of breakpoints because of the way break-
points would affect the behavior of the program. In S23’s
case, he feared that interacting with the step debugger would
interfere with reproducing bugs on the web page with the
mouse. S24’s code involved downloading many files in paral-
lel and the code that executed in the meantime, so stopping at
breakpoints would affect the order that events occurred. S23
said that they had considered adding log statements as well,
but that it was more tedious than using Theseus’s log.

S20 chose to use breakpoints at first, but eventually switched
to Theseus. S20 started by setting a breakpoint, then running
the code but failing to hit the breakpoint. He repeated those
steps 2 more times before saying, “I can see that this kind
of thing might be a lot easier to see ... with Theseus.” He
activated Theseus and was able to see which functions were
actually used during his mouse gesture.

However, S21 preferred using breakpoints to using Theseus.
S21 thought that omniscience was the useful aspect of The-
seus, saying that if his browser’s breakpoint debugger were
omniscient, he would use that instead of Theseus’s log. He
pointed out that breakpoints allowed him to view the entire
state (including the contents of the web page) after every step.

S27 did not use Theseus because there would have been
“a bunch of calls all over the place” and he feared that
he wouldn’t be able to see which were related to his bug.
S28 discovered that Theseus introduced timing delays in his
multi-threaded animations which changed the characteristic
of the bug he was investigating.

Discussion

The programmers in this study seemed to think of Theseus as
a debugger and not a tool to be left running all the time. Their
feedback suggested that the overhead of instrumenting their
entire project was too great, which may have been what kept
in the as-needed category of tool. This would explain why
only two programmers used Theseus to verify their initial fo-
cus points were correct.

Again, we observed users using live-updating call counts in
the same variety of ways as in the lab study, although we also
saw evidence that presentation may need to be improved to
reduce errors such as S20 reading unexecuted code to find
the source of a bug. Being able to watch call counts rise as
they interacted was enough to know whether the code they
were looking at corresponded to the behavior they thought it
did, and to get a sense of how often the code was executed,
both of which breakpoints turned out to be poorly suited for.
However, it seems that breakpoints are still needed when the

programmer wants to walk through the code, or when they
want to inspect a lot of program state at a time.

S21’s experience suggests that visualized data which merely
supports a certain conclusion without proving it outright can
be useful for making snap judgements without distracting
programmers from their current task.

Four programmers wanted more visualizations with a simi-
lar presentation to the visualizations in Theseus, although not
necessarily for them to be always on. The types of informa-
tion desired were varied enough to suggest always-on display
modes depending on the task. Users found problems such as
the overhead of the instrumentation and information overload
in the log, but call counts were used in a variety of ways, and
the call counts and coloring turned out to be a good light-
weight alternative to breakpoints for finding code correspon-
dences and having “just enough” evidence to support a con-
clusion. The evaluations have revealed several avenues for
improvement on a style of debugging interface whose time
has come.

OPEN-SOURCE DEPLOYMENT

Theseus has been available as an extension for the Adobe
Brackets editor since February 11, 2013. It can be installed
from within Brackets, and the source code is available®. As
of December 2013, Theseus has been installed approximately
2,500 times (users may choose not to send usage data) and
512 of those users have actively used Theseus on at least 2
separate days. 46 bug reports and feature requests have been
filed.

CONCLUSION

This paper presented Theseus, an IDE extension that vi-
sualizes run-time behavior within a JavaScript code editor.
Theseus visualizes the program’s run-time state using code
coloring for unreached functions, call counts for executed
functions, and automatic retroactive logging of parameters
and return values. A lab user study and a field deployment
found that programmers enjoyed the availability of reacha-
bility coloring and call counts, and adopted new problem-
solving strategies to take advantage of their strengths.

ACKNOWLEDGMENTS

This work was supported in part by Adobe, and by the
National Science Foundation under award number SOCS-
1111124. Any opinions, findings, conclusions, or recommen-
dations in this thesis are the authors’, and they do not neces-
sarily reflect the views of the sponsors.

REFERENCES
1. Burg, B., Bailey, R., Ko, A.J., and Ernst, M. D.
Interactive record/replay for web application debugging.
UIST *13, ACM (New York, NY, USA, 2013), 473-484.
2. Chilton, L., Kim, J., André, P., Cordeiro, F., Landay, J.,
Weld, D., Dow, S., Miller, R., and Zhang, H. Frenzy:

Collaborative Data Organization for Creating
Conference Sessions. SIGCHI 14 (2014).

STheseus: https://github.com/adobe- research/theseus
Fondue: https://github.com/adobe- research/fondue

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Fleming, S. D., Scaffidi, C., Piorkowski, D., Burnett, M.,

Bellamy, R., Lawrance, J., and Kwan, I. An information
foraging theory perspective on tools for debugging,
refactoring, and reuse tasks. TOSEM 22, 2 (2013), 14.

. Gould, J. D. Some psychological evidence on how

people debug computer programs. International Journal
of Man-Machine Studies 7, 2 (1975), 151-182.

. Griffiths, D. Scheme Bricks, Sept. 2013. http://www.

pawfal.org/dave/index.cgi?Projects/Scheme%20Bricks

. Ko, A., Myers, B., and Aung, H. Six learning barriers in

end-user programming systems. In VI/HCC (2004),
199-206.

. Ko, A.J., and Myers, B. A. Designing the Whyline: A

Debugging Interface for Asking Questions about
Program Behavior. In SIGCHI "04, vol. 6 (2004).

. LaToza, T. D., and Myers, B. A. Developers Ask

Reachability Questions. In Proc. ICSE 2010, vol. 1,
ACM Press (New York, New York, USA, 2010).

. LaToza, T. D., and Myers, B. A. Visualizing Call

Graphs. In VL/HCC 2011 (Sept. 2011).

Lieberman, H., and Fry, C. Bridging the Gulf Between
Code and Behavior in Programming. CHI *95 (1995).

Mankoff, J., Dey, A. K., Hsieh, G., Kientz, J., Lederer,
S., and Ames, M. Heuristic evaluation of ambient
displays. CHI "03, ACM (2003), 169-176.

McDirmid, S. Usable live programming. SIGPLAN
(2013).

Meier, M. S., Miller, K. L., and Pazel, D. P. Experiences
with Building Distributed Debuggers. In Proc.
SIGMETRICS 1996 (1996).

Microsoft. Debug Your App by Recording Code
Execution with IntelliTrace. http://msdn.microsoft.com/
en-us/library/vstudio/dd264915.aspx.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J., Silverman, B., et al. Scratch: programming
for all. Communications of the ACM 52, 11 (2009),
60-67.

Saff, D., and Ernst, M. Reducing wasted development
time via continuous testing. In ISSRE ’03 (2003),
281-292.

Schrock, E. Debugging AJAX in Production. ACM
Queue (2009).

Sillito, J., Murphy, G. C., and De Volder, K. Questions
programmers ask during software evolution tasks.
SIGSOFT ’06/FSE-14, ACM (2006), 23-34.

Swift, B., Sorensen, A., Gardner, H., and Hosking, J.
Visual code annotations for cyberphysical programming.
In Ist International Workshop on Live Programming
(LIVE) (2013).

Tanimoto, S. Towards a theory of progressive operators
for live visual programming environments. In /EEE
Workshop on Visual Languages (1990), 80-85.

Victor, B. Learnable Programming.
http://worrydream.com/#!/LearnableProgramming, 2012.

https://github.com/adobe-research/theseus
https://github.com/adobe-research/fondue
http://www.pawfal.org/dave/index.cgi?Projects/Scheme%20Bricks
http://www.pawfal.org/dave/index.cgi?Projects/Scheme%20Bricks
http://msdn.microsoft.com/en-us/library/vstudio/dd264915.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd264915.aspx
http://worrydream.com/#!/LearnableProgramming

	Introduction
	Related Work
	Interface Design
	Scenario: A Network Activity Indicator
	A sanity check
	Understanding timing
	Verify that the timer clears appropriately
	Discussion

	Retroactive Logging
	Discussion

	Implementation
	Fondue, the JavaScript instrumentation library
	Mutability

	Querying the program trace
	Debugging server-side Node.js code
	Debugging client-side code in Chrome

	Evaluation 1: Lab Study
	Methodology
	Results
	RQ1: How might programmers find correspondences between code and program behavior with Theseus?
	RQ2: How might programmers use Theseus to find where chains of callbacks break down?
	RQ3: Would programmers use Theseus's structured log to sort through tangled control-flow problems?

	Discussion

	Evaluation 2: Interviews
	Methodology
	Results
	H1. People will notice errors or oddities for investigation
	H2. People will locate the code responsible for a particular behavior more accurately & confidently
	H3: People will verify code behavior by running it instead of reading and guessing
	H4. People will feel they waste less time with always-on tools
	H5. People will want more live displays
	Downsides of always-on displays
	When do programmers find Theseus to be helpful?

	Discussion

	Open-Source Deployment
	Conclusion
	Acknowledgments
	REFERENCES

