
Supporting Expressive Procedural Art Creation
through Direct Manipulation

Jennifer Jacobs1,2, Sumit Gogia1, Radomı́r Měch2, Joel Brandt2

1 MIT Media Lab 2 Adobe Research
jacobsj@media.mit.edu, summit@mit.edu {rmech, joel.brandt}@adobe.com

Figure 1. Left: Para’s interface. Right: Para enables artists to quickly set up constraints using direct manipulation interactions with their art. Here, an
artist has set up a series of color constraints that makes exploring color variations highly efficient.

ABSTRACT
Computation is a powerful artistic medium. Artists with ex-
perience in programming have demonstrated the unique cre-
ative opportunities of using code to make art. Currently, man-
ual artists interested in using procedural techniques must un-
dergo the difficult process of learning to program, and must
adopt tools and practices far removed from those to which
they are accustomed. We hypothesize that, through the right
direct manipulation interface, we can enable accessible and
expressive procedural art creation. To explore this, we devel-
oped Para, a digital illustration tool that supports the creation
of declarative constraints in vector artwork. Para’s constraints
enable procedural relationships while facilitating live manual
control and non-linear editing. Constraints can be combined
with duplication behaviors and ordered collections of artwork
to produce complex, dynamic compositions. We use the re-
sults of two open-ended studies with professional artists and
designers to provide guidelines for accessible tools that inte-
grate manual and procedural expression.

Author Keywords
Procedural Art; Generative Art; Programming

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User
Interfaces — Graphical user interfaces.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06 - 11, 2017, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05 · $15.00
DOI : http : //dx.doi.org/10.1145/3025453.3025927

INTRODUCTION
New tools and technologies have emerged that support the
production of procedural, parametric, and generative forms
of art. While differing in their applications, these art forms
share the common property of being defined by a represen-
tational system of rules, relationships, and behaviors, which
makes them flexible, adaptable, and capable of systematic re-
vision. Currently, most professional procedural art is pro-
duced through computer programming. Describing art with
code allows artists to manage complex structures, automate
processes, and generalize and reuse operations [38, 27]. More
broadly, procedural tools support exploration, experimenta-
tion, and play because their processes can be revised and iter-
ated upon without loss of quality or affordance [26].

There is increasing interest in the artistic applications of pro-
gramming, as indicated by the growth of coding platforms
for art [37, 3]. Yet programming still presents many chal-
lenges for artists. In general, programming is challenging to
learn. Programming languages present barriers to incremen-
tal learning by requiring people to learn many concepts before
accomplishing even simple tasks [20]. Furthermore, while
manual artists and craftspeople learn mainly through obser-
vation and action of tacit manual skills [26], programming
education often emphasizes a structured top-down approach
of learning formal principles for application to concrete, pre-
defined tasks [10]. Victor states that learning programming
may always be challenging because learning abstraction is
hard [53], but he argues that tools can be designed to make
that challenge more tractable [51].

In addition to the challenges of learning to program, there
are significant interaction differences between programming
tools and software for manual art. Graphic illustration soft-

ware is concrete: it approximates physical art media through
direct manipulation interactions. Concrete tools often have a
gradual learning curve [46], and can play an important role in
engendering creative diversity [41] and supporting the con-
ception of new ideas [45]. Programming tools, by compari-
son, are typically representational [50], where users edit a de-
scription of the work rather than the work itself1. Representa-
tional tools can present an additional challenge for artists ac-
customed to working with and thinking in terms of concrete
mediums.

Contrasting the creative opportunities of procedural art with
the challenges of programming raises our research question:
Can we support accessible and expressive procedural art by
enabling people to describe procedural relationships through
direct manipulation? Prior work in developing accessible
procedural tools for art has focused on creating simplified tex-
tual programming languages and environments [34, 35, 14],
augmenting graphical user interface (GUI)-based tools with
visual programming languages [7], or linked editing between
textual programming and direct manipulation [15, 2, 6, 11].
Our approach is to augment the conventions of graphic art
software to support the creation and modification of proce-
dural relationships exclusively through manipulation of con-
crete artwork. In doing so, we build on prior work using
direct manipulation to create dynamic relationships in data
visualization [53], interactivity [17], and architecture [24],
but with the new objective of supporting and extending the
practices of manual fine artists. This goal is challenging be-
cause it requires developing a procedural representation that
supports expressive creation, yet is compatible with direct-
manipulation conventions.

This paper makes the following contributions: First, we in-
troduce Para, a new direct-manipulation tool that supports
procedural art through live, non-linear, and continuous ma-
nipulation. Second, we demonstrate core declarative proce-
dural operations that can be expressed through direct ma-
nipulation, are easy to use, and enable diverse creative out-
comes. These operations include declarative geometric and
stylistic constraints, visually represented ordered lists that can
be used to specify how constraints map to collections of ob-
jects, and declarative duplication to enable dynamic copying.
Constraints, lists, and duplication can be combined in differ-
ent ways to produce different outcomes. Third, we provide
evidence for how the direct manipulation of procedural rela-
tionships can extend manual practice through two open-ended
studies. These studies evaluate the accessibility and expres-
siveness of our system in the hands of professional artists by
examining how they work and the artifacts they produce. To
our knowledge, these are the first open-ended studies in the
domain of direct manipulation procedural art. Fourth, we pro-
vide recommendations for building expressive direct manip-
ulation procedural tools, as gleaned from evaluation.

BACKGROUND AND RELATED WORK
To inform the development of Para, we reviewed litera-
ture that discussed support for learning and expressiveness
1Our use of the term representational is from computer science. It
is distinct from its meaning in art to describe realistic imagery.

through programming. We also examined research about the
practices of fine and commercial artists and visual design-
ers. While artists and designers differ in their goals, they fre-
quently rely on the same tools; for example, Photoshop and
Processing are both used for art and design. Questions about
how tools support different creative motivations are outside
the scope of this paper. Rather, our research focused on how
different tools support or hinder creative practice. Therefore,
we examine creative tool use in commercial and fine-art. In
the comparison of procedural and manual tools for art and de-
sign, we focused on two primary tensions: ease of use versus
expressiveness, and concrete versus representational tools.

Ease of use versus expressiveness
Programming languages are challenging for end users be-
cause they must learn a great deal in order to produce sim-
ple results [28]. This tension is reflected in procedural tools
for art and design. Creative coding applications like open-
Frameworks [23] and Processing [35] are extremely expres-
sive; however, these tools require people to learn numerous
textual programming conventions and lengthy APIs before
producing basic artwork. These severe learning thresholds
are common in end-user programming and can present in-
surmountable barriers to novices [20]. Visual programming
languages [7, 1, 39, 8] can provide a more accessible entry
point by providing an impression of directly constructing a
program, rather than abstractly designing it [29], and repre-
sent an important initiative to support artists, designers, and
other end-users in programming. We describe interaction dif-
ferences between visual languages and our system in the fol-
lowing subsection.

A similar conflict between ease of use and expressiveness also
exists in computer-aided design (CAD). Entry-level paramet-
ric tools often enable customization of existing designs, how-
ever the ability to compose new designs requires learning sig-
nificantly more advanced tools and workflows. Many GUI-
based CAD tools, including Rhino and Inventor, support pro-
cedural and parametric functionality by enabling designers to
author scripts and programs that act on objects created in the
GUI. These features offer new opportunities but are difficult
to use and learn in comparison with the GUI [24]. When
adapted for people without formal knowledge in math, geom-
etry, and logic, CAD tools often take the form of customiz-
able parametric models [13, 42]. Although these tools can
increase participation, studies indicate that they do not pro-
duce a diversity of creative outcomes, nor scaffold novice use
of advanced, open-ended CAD tools [30].

We seek to create accessible procedural tools that retain forms
of expressiveness relevant to a specific domain. Research that
demonstrates this approach in other domains includes inter-
action design via parallel source editing and tunable control
interfaces [9], user-interface (UI) programming through com-
bination of declarative constraints, state machines, and a live,
visual notation [32], and the specification of UI behaviors
through direct manipulation of their ordering [25].

In developing procedural tools for artists, much can be bor-
rowed from research in supporting novice programmers in
other domains. In supporting young people and novice CAD

users, it is important to balance accessibility with expressive-
ness. Often this can be achieved by presenting a small num-
ber of programming concepts in a relevant, creative context.
Resnick and Silverman asserted that for young people, a little
bit of programming goes a long way, and focused on devel-
oping tools with a minimal number of carefully selected pro-
gramming concepts. This enables children to explore a vari-
ety of creative outcomes, while minimizing learning thresh-
olds [40]. The Logo [34] and Scratch [39] programming lan-
guages are two examples of this approach, and apply care-
fully designed simple languages with computational draw-
ing and interactive storytelling, respectively. Similarly, in the
CAD domain, MetaMorphe presents a digital fabrication de-
sign framework in a format similar to web scripting, making
parametric design accessible and expressive for people with
familiarity in web programming [48], and Jacobs and Buech-
ley assisted novices in expressive forms of computational de-
sign by linking a constrained programming environment with
physical crafting [14]. We designed Para around a minimal
set of programming concepts in order to make it accessible to
novice coders. We structured these concepts within the soft-
ware so that they could be used to produce diverse outcomes.

Concrete interaction versus symbolic representation
In fine art, concrete tools and media are common. These
range from the physical (brushes, carving tools, hands), to
digital (using direct-manipulation software to manually ad-
just bitmaps or vectors). There is evidence that concrete
engagement aides creative decision making; designers often
conceive ideas through reflection-in-action and through direct
engagement with physical media [45]. Many digital interac-
tion designers find it difficult to conceive of novel concepts
while working in the immaterial domain of software [33].
Concrete engagement also can play a role in learning. Klem-
mer describes how concrete interactions can support learn-
ing of new concepts in ways that reading and listening do
not [19]. In contrast to concrete media, programming is ab-
stract and often requires working through a textual represen-
tation. Visual programming languages can reduce some of the
challenges of textual languages; however, they still require
the artist to work through an abstract representation of the
artwork rather than on an artifact itself [50]. Our approach is
different from both textual and visual programing languages
because it uses direct manipulation of the artwork to define
and manipulate procedural relationships.

While it is difficult to describe certain computational con-
cepts in concrete form, direct manipulation can be used to
describe dynamic relationships in ways that are compara-
ble to programming languages. The earliest example is
SketchPad, which demonstrated that parametric relationships
could be described by selecting and manipulating geometric
shapes [47]. More recently, Kitty and Skuid aimed to reduce
difficulty in animations and interactive infographics by cre-
ating dynamic behaviors through direct manipulation of a re-
lational graph [17, 18] and Recursive Drawing enabled non-
linear editing of self-similar designs through the nesting of
drawing canvases [43]. Hoarau and Conversy demonstrated
graphic design tools that enable users to indicate dependen-
cies between the properties of objects [12], Xia et al. applied

Common Rare
Complex forms and patterns through
procedural duplication and object-
oriented programming.

Close integration of procedural and man-
ual illustration.

Iterative variation across scale, form and
color.

Procedural transformation of hand-
drawn artwork.

Regular geometric/ symmetrical distri-
bution of form.
Generative compositions through ran-
dom distributions (normal, uniform, etc.)

.

Table 1. Techniques identified in professional procedural artwork.

object-oriented principles to reduce reliance on WIMP UIs
for touch and tablet interfaces [54], and Blackwell demon-
strated a direct-manipulation system for procedural editing of
bitmaps [5]. In data visualization, Drawing Dynamic Data
Visualizations [53] and Apparatus [44] support the creation
of interactive visualizations through direct manipulation.

Our work is differentiated from prior work in two ways: the
domain in which we work, and our approach to evaluation.
Whereas prior tools support data visualization, interactivity,
and animation, or emphasize new interaction modalities, our
objective is to develop accessible procedural tools that extend
the practices of fine artists. This distinction is emphasized by
Para’s support of iterative variation and dynamic duplication,
which is absent from prior tools [12, 54, 17, 18]. We are in-
spired by prior work that suggests the creative potential of
dynamic direct manipulation, but recognize the need to eval-
uate this approach in actual art practice. Much of the prior
research lacks evaluation; Hoarau and Conversy are unsure
if their interface is understandable due to lack of user eval-
uation, and Victor recognizes his tools are untested stating
that they are “not necessarily the correct way of doing things”
but rather a starting point for exploring new interfaces [53].
Other tools are evaluated, but focus on tool accessibility and
efficiency through predefined tasks [54, 17, 18]. Conversely,
we seek to understand the expressive potential of our system
in professional art practice; therefore, we evaluate it through
extended open-ended studies and present polished, original
artwork in our results.

PARA SOFTWARE DESIGN AND IMPLEMENTATION
Para is a software tool aimed at accessible yet expressive inte-
gration of procedural techniques in visual art through a direct-
manipulation interface.2 Before building Para, we developed
design guidelines by compiling procedural artworks by pro-
fessional artists including Joshua Davis, Casey Reas, Marius
Watz, Emiliy Gobielle, Theo Watson, Christopher Coleman,
and Erik Naztke. Analysis of this artwork revealed proce-
dural aesthetics and methods consistent across the artworks
(table 1, common). We also highlighted qualities found in
only a few artworks that blended manual and procedural cre-
ation (table 1, rare). Following this initial analysis, we proto-
typed interactions that supported similar approaches and aes-
thetics but were compatible with direct manipulation. The
primary conventions we sought to preserve were image-based
communication of structural and organizational relationships,
support for live and non-linear edits, removal of textual com-
mands and expressions, and integration of interface compo-
nents from direct manipulation art tools. We iteratively re-
2Para is available for use at http://paradrawing.com/ and the
source is at http://github.com/mitmedialab/para.

http://paradrawing.com/
http://github.com/mitmedialab/para

Iterative Behavior Description
Interpolation Evenly distributed values sampled from a Lagrange polyno-

mial derived from the reference.
Random A uniform distribution of random values between the min and

max values of the reference. Random seed is re-calculated
when min or max is manually changed.

Gaussian A normal distribution of values with the mean derived from
the first reference object and a standard deviation derived
from the distance between the first and last object.

Radial Polar values based on a diameter determined by the min and
max values of the reference. list.

Alternate A series which cycles through the values of the objects in the
reference (e.g for reference values 360,45,250 the result will
be 360,45,250,360,45. . .)

Table 2. Iterative constraint behavior options.

vised the prototype interactions into a unified system that
could produce sample artwork. We informed this revision
through regular meetings with one artist (Natzke), and inter-
views with two others (Gobielle and Coleman). In the re-
mainder of this section, we detail the interface and feature set
of Para in relation to these guidelines, and illustrate how these
features enable different forms of expression.

Interface
We developed Para as vector drawing software because it en-
abled us to structure the interface and interactions around
software used by artists. The interface features analogs of
elements in digital illustration software, including tools for
manual shape creation, selection, and transformation (fig 1 a);
a panel adjusting stylistic and geometric properties of vector
artwork (fig 1 g); and a document structure panel that displays
the current components in the drawing (fig 1 e). Para is imple-
mented in JavaScript using Backbone.js [4], and the Paper.js
vector graphics scripting framework [21]. Although Paper.js
contains methods for managing hierarchies of vector graph-
ics, we did not use this functionality; because procedural na-
ture of Para required us to develop our own representation for
document structure, which we detail below.

Constraints
In textual procedural tools, complex relationships often are
comprised of simpler, low-level operations and relationships.
Para builds on this approach through object-to-object con-
straints, which serve as the fundamental building block for
advanced procedural functionality. Constraints allow artists
to create relationships between geometric or stylistic prop-
erties of a minimum of two vector objects: a reference (the
object whose properties are referenced in the constraint) and
a relative (the object being constrained). Constraints satisfy
three important conventions of direct manipulation. First,
they support non-linear edits without creating errors or in-
consistencies. Second continuous direct-manipulation edits
to a constraint reference results in live updates to correspond-
ing relatives. Third, constraints provide a visual means of de-
scribing mathematical relationships between graphical forms.
When created, constraints preserve the current state of the
drawing. In their simplest form, one-to-one constraints are
represented as expressions of the form f (x) = x + o, with
x the value of the reference property and o the existing off-
set between the reference property and relative property prior
to constraint. This format preserves any difference in val-
ues between the reference and relative properties when the
constraint is created, enabling artists to describe constraint

Figure 2. Variations on many-to-many constraints. (a) Basic list con-
straint between 8 relatives and 2 references. (b) Radial pattern produced
through radial distribution with two reference shapes. (c) Arc patterns
and color gradient produced with polynomial interpolation. (d-f) Varia-
tions of polynomial, radial, and random distributions.

relationships by drawing them rather than by writing them
as a mathematical expression. The constraint tool () en-
ables the creation of one-to-one constraints by selecting the
relative object and reference in succession. When the ref-
erence is selected, a set of icons appears over the reference
object (fig 1 d), which enables the artist to specify the prop-
erty to constrain: position, scale, rotation, fill and stroke
color, stroke weight, or a sub-property of these. We extended
Constraint.js [31] to handle constraint propagation and added
functionality to detect and prevent constraint cycles.

Figure 1 demonstrates one application of constraints to pro-
duce variations in the colors of a flower illustration. Here, the
fill color of the inner red portion of the flower is constrained
to the fill color of the yellow center and the outer orange por-
tion is constrained to the red portion. As the hue, lightness,
or saturation of the center is changed, the colors of the outer
petals shift while maintaining their original offset. This en-
ables global relative color changes across a drawing from a
single edit (fig 1 h). This also demonstrates how edits prop-
agate across chained constraints to secondary relatives. By
varying which sub-properties are constrained, artists can fine-
tune how different parts of the drawing respond to an edit.

Lists
Our discussions with procedural artists highlighted the im-
portance of supporting efficient manipulation of large num-
bers of visual elements. Textual tools enable management
of multiple objects through abstract datatypes to store collec-
tions of data and control structures like loops to efficiently
generate iterative variations across collections. In Para, mul-
tiple objects are managed through lists: visually represented,
ordered collections of artwork that can be procedurally ma-
nipulated. Lists are higher-level structures and can be used
to map transformations to multiple objects. Lists are created
from selected objects using the list button and appear in the

Figure 3. Random starfield creation: (a) duplicating a star, (b) creating a row of stars, (c) creating variation in scale and color, (d) producing a random
distribution, (e) manually manipulating points of star, and (f) finished starfield.

list section of the document structure panel (fig 2 a). Man-
ual transformations on a list are mapped to each member. For
example, rotating a list will rotate each member around its
own center, rather than the centroid as happens in geometric
groups. This behavior allows one-to-many constraints where
multiple objects are subject to one constraint. In the flower
example, we can constrain the 14 small orange outer portions
of each petal (fig 1) using a list and a single constraint.

Para’s lists also facilitate iterative variation similar to that
found in textually generated procedural art. This is achieved
through many-to-many constraints: constraints in which both
the reference and relative are lists. Many-to-many constraints
create iterative mappings where each object in the relative list
is constrained differently based on its index. This behavior is
possible because unlike other tools [12, 17], Para’s lists are
ordered. The values to constrain the relative are calculated by
interpolating across the values of the objects in the reference
list. Figure 2 demonstrates how a many-to-many constraint
can be used to dynamically modify the distribution of a pat-
tern. In this example, the shapes of a repeating ellipse and
diamond pattern are constrained on the x and y axes by a ref-
erence list containing two green rectangles (fig 2 a). The artist
can update the distribution of the diamond ellipse pattern by
modifying the position of the rectangles. In the process, the
geometric offsets are maintained between each member of the
reference and relative.

Different types of distributions can be created by altering the
content of the reference list. If the reference list contains
more than two members, a non-linear reference value set is
produced (fig 2 c). These values are sampled from a Lagrange
polynomial that is produced from the values of the objects of
the reference list. Moving the second rectangle in the refer-
ence list up or down changes the polynomial and results in
a curved distribution of the relative pattern. This interpola-
tion technique can produce many different types of non-linear
distributions across any property, including parabolas, waves,
and ellipses, by adding more shapes to the reference list. Be-
cause interpolation does not support all distributions, Para
allows artists to select different mapping behaviors for con-
straints from a drop-down menu in the constraint inspector

(fig 2 c). Table 2 lists the current options and their calculation
mechanisms and figure 2, b, e, and f demonstrate distributions
derived from radial and random mappings. The constraint in-
spector also enables artists to modify the individual offsets
for each member of the reference list using the relative index
selector, or exclude a relative member from being affected
using the exception button (fig 2 b).

Duplicators
Our analysis of procedural art demonstrated the importance
of automatically creating new forms for generative composi-
tions. Constraints and lists facilitate procedural relationships,
but cannot generate new objects by themselves. To address
this, we added duplicators to Para. Duplicators are special-
ized lists with the ability to declaratively control the number
of objects they contain. Duplicators are initialized on a single
object. Doing so generates or deletes new shapes when the
count is increased or decreased. When first created, duplica-
tors contain self-referencing constraints on all geometric and
stylistic properties. Practically, this results in iterative varia-
tions across all members of a duplicator on any property by
directly manipulating either the first or last objects. Updates
to the number of copies of a duplicator will preserve these
variations. Like other constraints, duplicator constraints can
be modified using the constraint interface to change offsets,
specify exceptions, and change constraint behavior for differ-
ent properties and sub-properties. Duplicators also can act
as references or relatives in manually created constraints. To
preserve correspondence across the geometry of their mem-
bers, duplicators enact a constraint-like behavior on the paths
of all of the duplicates wherein changes to the points of any
individual shape are propagated across the other copies. Du-
plicators build on the low-level functionality of lists and con-
straints to enable creation and management of distributions
with many shapes, for example, the creation of a random star
field in Figure 3. A single five-point star is drawn and du-
plicated (fig 3 a). The start and end copies are manually al-
tered by position, scale, and fill color to produce a diagonal
line of stars growing in size and brightness (fig 3 b). The
x-position constraint mapping is changed to random, produc-
ing a vertical gradient from light to dark (fig 3 c). Changing
the mapping of the y-position constraint to random results in

Figure 4. Group duplicators. (a) Group with three members. (b) Du-
plicator initialized on group. (c) Arc pattern produced with three refer-
ences (selected). (d) modifying position/color of individual group mem-
bers (orange). (e-f) variations from modifying group members.

a field of stars with a random distribution of brightness and
scale (fig 3 d). The random distribution can be recalculated
by manually dragging the first or last star, and the number of
stars can be increased by modifying the count. The shape of
each star can be altered by modifying the points of any indi-
vidual star (fig 3 f). Geometric groups also can be converted
into duplicators, thereby enabling more complex distributions
(fig 4). Groups are a structural way to make compound ob-
jects and do not serve a procedural purpose on their own. For
group duplicators, constraints are created between each re-
spective member of a group across each copy to ensure that
correspondence between each copy is maintained if the struc-
ture of a single group is altered (fig 4 d-f). In Para’s internal
representation, duplicator constraints are identical to many-
to-many constraints. Duplicator constraints are between a
reference list consisting of the first and last member of the
duplicator, and a relative list consisting of the duplicator’s
children. Self-referencing is possible because objects in Para
can be in multiple lists simultaneously.

EVALUATIONS
The evaluation of Para had two objectives: to evaluate the ac-
cessibility and expressiveness of Para in an open-ended set-
ting and to understand how procedural tools could support
manual artists. We conducted two studies targeting both ob-
jectives. The first evaluation was a breadth-based workshop
with 11 artists, aimed at revealing the creative trade-offs be-
tween direct and textual tools. The second evaluation was
an in-depth study with a single artist, aimed at evaluating
Para’s performance in realistic creative practice. Building
from the the opportunities and challenges highlighted in our
background research and our analysis of professional proce-
dural artwork, we developed the following evaluation criteria:

Ease of use: Is it easy for novice programmers to use the
tool? Can people understand the tool’s artistic applications?

Creative outcomes: Does the tool support the creation of
different procedural aesthetics? Does the tool enable creating
variations of a piece?

Process: How does working with the tool compare to tra-
ditional art tools? Can artists integrate their prior expertise?
Can people move between manual and procedural creation?

Reflection: Does the tool encourage thinking about procedu-
ral relationships? Does the tool affect how people think about
making art?

Id Background Manual Art Digital Art Coding
p1 graphic design 4 5 1
p2 graphic design 4 4 1
p3 design 3 3 2
p4 printmaking 5 5 1
p5 art and CS 3 3 3
p6 illustration 4 4 1
p7 installation design 5 5 5
p8 architecture 5 5 1
p9 illustration 4 4 1
p10 art and CS education 4 4 5
p11 Product Design 4 5 2
Smith painting graphic design 5 5 2

Table 3. Participant backgrounds and experience in manual art, digital
art and coding (1 being no experience and 5 being expert.)

In each study we collected data through recorded discussions,
surveys, and participant artwork. Surveys contained attitudi-
nal questions relating to our evaluation criteria, using 5-point
Likert scales, with 5 as the optimal response. Survey results,
discussion transcripts, and artwork were analyzed with re-
spect to our evaluation criteria. The majority of the results are
qualitative, triangulated from open-ended survey responses
and group or individual discussions. When scale data are
used, we present the median and standard deviation.

Workshop study methodology
Our workshop was conducted with 11 participants from a
range of art and design backgrounds. The majority were in-
experienced programmers (table 3). The workshop lasted 14
hours over two days and covered Para and the textual pro-
cedural art tool Processing. We compared Para to Process-
ing because Processing shares many of the same accessibility
objectives as Para. Our goal was to compare Para’s acces-
sibility and expressiveness to textual procedural tools, there-
fore we did not compare Para to non-procedural design tools
like Adobe Illustrator. Illustrator emphasizes manual draw-
ing tools, which are not the focus of Para’s innovation. Par-
ticipants were first introduced to Para and given incremen-
tal demonstrations in the use of duplicators and groups, fol-
lowed by a period for free experimentation. Participants then
were introduced to Processing and provided instruction in
syntax, drawing and transforming shapes, loops, mathemat-
ical expressions and conditionals and then given opportuni-
ties to freely experiment. Our instruction in Processing was
based on approaches for beginners from the Processing Hand-
book [36], and demonstrated methods for producing designs
that were similar to those possible using Para. Following the
instruction period, participants had 3 hours to work on a piece
of their choice with either or both tools. We also allowed par-
ticipants to use other tools in conjunction with Processing and
Para (e.g. Photoshop and Illustrator) for bitmap manipulation
and detailed manual drawing, tasks not intended to be sup-
ported by Para or Processing.

Limitations
Our study required professionals to rely on prototype soft-
ware with less sophisticated drawing tools than commercial
software, which people found limiting. This is common
in systems-building research. Although Processing was the
most relevant textual procedural art tool to compare with
Para, it also includes features for animation and interactiv-
ity. These features do not exist in Para and are, therefore,

Figure 5. Artwork from workshop. Left: conditional-design from Pro-
cessing. Right: Designs generated from multiple hexagonal duplicators
from Para combined with a center motif from Processing.

not directly comparable. We compensated in our study by fo-
cusing on Processing’s capabilities for static procedural art.
Para’s cycle-prevention feature was not implemented prior to
our workshops; however, we notified participants of the issue,
and with few exceptions, people did not create cycles. Our in-
depth study surveys the experiences of one person; however,
evaluations with additional artists from different backgrounds
would likely reveal additional insights. We believe the vari-
ety of aesthetics and styles produced by one person suggests
the potential of our approach to support a variety of artists.
Finally, it is challenging to measure expressiveness because
different artists are expressive in different ways. We there-
fore present the artwork created with our system in order to
provide concrete examples of its expressiveness.

Workshop results
Overall results indicate that participants found the direct-
manipulation interface of Para more intuitive to use than tex-
tual programming in Processing. People who specialized in
graphic design and illustration prior to the workshop felt that
Para fit well with their current practices and they were inter-
ested in using it in the future. People with backgrounds out-
side of graphic art and illustration were less interested. Par-
ticipants felt that textual code could provide greater control
for experienced programmers. In the following section, we
detail these results in the context of our evaluation criteria.

Ease of use: All participants were able to follow our instruc-
tions for using Para but struggled to understand our instruc-
tions for Processing. These observations were substantiated
by survey responses: seven participants stated that they felt
Para was easy to learn, and three felt Processing was easy to
learn. Many participants said the difficulty of Processing in-
creased their desire to practice it when they had the benefit
of instructor support. Conversely, participants said Para was
familiar and felt confident they could learn it independently.

Process: All participants experimented with both Process-
ing and Para throughout the workshop. Participants exhibited
a mix of responses with regard to how Processing fit with
their prior art practice (mean:3.6, std:0.92); however, nearly
all participants expressed interest in using the tool in the fu-
ture (mean: 4.3, std:0.47). In survey and verbal responses,
participants indicated they struggled with understanding the
logic of Processing programs. Several people described their
process as one of trial and error. In addition, people were frus-
trated by not being able to adjust artwork manually. Despite
the challenges in learning Processing, several people talked
about how they could exercise greater control and perform
tasks not possible in Para. Four participants stated that Para
fit well with their existing practice, and six (including the first
four) stated that they could see themselves using Para in fu-

ture work. People who had expertise in manual art and mini-
mal programming experience were the most interested in us-
ing Para in the future. For people with interest in using pro-
cedural tools for 3D design and interactivity, Para was less
relevant by design. Primary frustrations with Para centered
on reduced sophistication of the direct-manipulation tools in
comparison with commercial equivalents.

Creative outcomes: Because of time constraints, partici-
pants were not able to create polished artwork with either
Para or Processing, although participants made a series of
sketches that suggested different directions for more sophis-
ticated work (fig 5). Participants who relied exclusively on
Processing primarily created variations of a radial distribu-
tion example we presented in the instruction, incorporating
randomness on opacity, scale, or rotation of shapes (fig 5 a,b).
Participants who used Para exhibited a range of approaches:
one person used portions of an illustration created prior to the
workshop in a duplicated pattern (fig 5 c), while another ex-
perimented with the duplication functionality to simulate 3D
rotated columns. Another participant generated a series of in-
crementally rotated geometric shapes. Using Illustrator, he
combined these forms with a radial pattern from Processing
(fig 5 d). Eight people stated that Processing enabled them
to create things they would have difficulty creating otherwise
(mean:4, std:1). Ten people stated that Para enabled them
to create things they would have difficulty making otherwise
(mean:4.1, std:0.83).

Reflection: In discussions and surveys, most participants felt
that textual programming could be a powerful tool for art;
however, they had a mix of reactions to using Processing. For
several participants, using Processing underscored their prior
associations of textual programming as inaccessible. The ma-
jority of participants felt that they would have to practice ex-
tensively with Processing to create sophisticated projects. In
discussion and open-ended responses, participants expressed
greater levels of confidence using Para because it had fea-
tures similar to digital illustration programs. Others described
Para’s interface as more intuitive than Processing. Several
people wrote that they found the live feedback in Para help-
ful; however, these responses were solely from people with
prior experience with textual programming tools. None of
the people new to programming commented on the live as-
pects, suggesting that people who only use direct manipula-
tion may take liveness as a given in digital tools. Several
participants talked about using Para and Processing for dif-
ferent purposes. One participant said Para was ideal for cre-
ating complex static illustrations, but Processing offered the
opportunity for interactive pieces. Another participant said
that Para and Processing were appropriate for different points
in her artistic process, and said she would use Processing if
she had a clear goal in mind.

In-depth study methodology
The workshop underscored the learnability of our system but
did not demonstrate how Para performs in real art practice.
We performed a second study to understand what kinds of art-
work a person could create with Para through extended use.
We commissioned the professional artist Kim Smith to use

Figure 6. a-j Illustrative work with para: (a-d) process for creating orchid, (e-i) process for creating snake, (j) finished piece, composited in Photoshop
and textured using image overlay. k-l examples of Smith’s illustrations prior to study. ©Kim Smith.

Para for two weeks to create several pieces of art. Smith has
extensive experience in abstract painting (fig 7 a), realistic il-
lustration (fig 6 k,l), and graphic design. She is an expert with
both manual and digital tools (table 3). She had an interest in
applying procedural techniques in her work but was reluctant
to invest the time needed to learn programming.

We met with Smith in person six times over the course of the
study, every 2-3 days, for 1-2 hours apiece. First, we intro-
duced her to Para in a 1-hour training session. In later meet-
ings we reviewed the artwork she produced and discussed her
experience. We gave her the choice of what to create dur-
ing the study, but suggested experimenting with abstract and
illustrated styles. Similar to the workshop, we allowed her
to incorporate other digital tools into her work with Para. In
the results, we distinguish between portions of artwork pro-
duced with Para and those produced by other means. In ad-
dition to written surveys and interviews, Smith wrote short
reflections after every working session. We used automated
surveys within Para to assess her experience while using the
system [40]. Automated dialogs appeared every 20 minutes
asking questions about her current task, goals and difficulties,
and a snapshot of her work was saved. Throughout the study,
we used Smith’s feedback to iterate on Para’s functionality.

In-depth study results
Smith found Para to be intuitive and felt she could use it more
effectively and with greater confidence than textual program-
ming and parametric CAD tools. She produced seven finished
pieces and applied Para to abstract and illustrative styles. In
her artwork, she used duplicators and iteratively constrained
lists, but did not find one-to-one constraints as useful. Smith
felt Para was compatible with her painting practice and also
offered new opportunities for creative exploration. Using
Para altered the way she thought about her artistic process,
and she requested to continue using the software afterwards.

Ease of use: Smith’s feedback from the experience sampling
indicated that she struggled initially with Para’s vector se-
lection and editing tools, which were less refined than those
in commercial software. Otherwise, she described the Para
interface as accessible and enjoyable. Specifically, she said
the emphasis on visual manipulation was “welcoming and
friendly,” and contrasted this with using complex CAD soft-

ware and textual programming tools. She also stated that Para
made her “comfortable starting with a blank canvas” because
the visual interface gave her confidence that she could pro-
duce something, and develop a process. When asked about
the minimal procedural feature set, she said,“I think there’s a
lot of options in a very small parameter set.”

Smith contrasted her use of Para with her use of textual pro-
gramming tools: It’s like this big wall that is slowing me
down. I would imagine if I was good with Processing there
would be a lot more I could do with it... But the entry point
for me is high. For a long time it’s going to be in my way.

Smith found some procedural aspects of Para to be difficult.
Initially she struggled with understanding the order in which
shapes should be selected for one-to-one constraints. We
modified the constraint tool to automatically pull up the prop-
erty selection interface for selected objects when the tool was
enabled. Smith said these revisions made the tool more intu-
itive. Although she experimented with one-to-one constraints
and felt they might be useful for other artists, Smith never
found a way to use them in her work. Smith also encountered
organizational challenges when creating extremely complex
work. At times it was difficult for her to identify and select
specific procedural relationships. We partially addressed this
by adding the ability to label constraints, lists, and geome-
try; however, organization remained an issue. In discussion,
Smith pointed out how organization was also a challenge in
non-procedural digital art tools, but felt that organizational
mechanisms were particularly important for tools like Para
because they made it easier to quickly build complexity.

Creative Outcomes: In week 1, Smith created four abstract
pieces using Para (see examples in (fig 7 b,d). She produced
them by drawing vector shapes in Para, and used duplica-
tors to create multiple copies with iterative changes in color,
scale, and position. In week 2, Smith made two more abstract
pieces. These incorporated procedural variation of opacity
and blend modes, and constrained lists fig 7 c). She also made
an illustration (fig 6 j), that applied duplicators, lists, and it-
erative constraints to the creation of flowers (fig 6 a-d) and
a snake (fig 6 e-i). In abstract and illustrative pieces, Smith
used Photoshop to add additional color and texture by using
painted imagery as a transparent overlay and background.

Figure 7. Comparison between Smith’s prior art and abstract work cre-
ated with Para. (a) sample of prior art, (b-d) finished pieces containing
procedurally created forms overlaid with hand-painted imagery in Pho-
toshop, (e) composition created in Para to produce c. ©Kim Smith.

Process: For her abstract work, Smith described her use of
Para as “exploratory” and “experimental.” She felt the un-
expected effects and forms possible through Para’s genera-
tive features (random and Gausssian mappings) were an ad-
vantage because they generated starting points for new work:
There is an element of applying a procedure and not knowing
exactly what will happen . . . and this is a really great quality
about Para. This software allows for an experimental pro-
cess . . . In some ways, it mirrors the experience of painting
for me, in that frequently I am open to chance and random
occurrences within my materials and techniques.

Smith associated the exploration possible with Para with tra-
ditional art media, stating: In a lot of ways [Para] feels sim-
ilar to traditional tools. The freedom to implement quickly,
understanding what’s happening, but not needing to have the
foresight ahead of time [allows for] a more sculptural way of
creating.

Because she was interested in variations in color and layer-
ing, Smith requested support for opacity and blend modes3,
which were features she relied on in Photoshop. We added UI
components for opacity and blend mode that matched those
in Photoshop and made it possible to iteratively constrain
these properties. Smith incorporated these features into her
abstract work (fig 7 c,e) and described how procedural con-
trol of opacity and blend enabled her to use subtractive masks
and filters in a dynamic fashion. The ability to quickly and
effectively incorporate features from Photoshop into the pro-
cedural structure of Para demonstrated how our system could
extend existing digital art tools.

3Blend mode determines how an object is composited with those
beneath it.

Smith initially focused on producing abstract work because
this was representative of her fine-art practice. She felt Para
was useful for illustrative work, but felt the goal-oriented na-
ture of illustration required using the system with greater con-
trol. The lack of refined drawing tools made the illustrative
work laborious at times. While Smith found constraints and
duplicators useful in both abstract and illustrative work, she
used other procedural aspects less. Lists were confusing at
first, and it was labor-intensive to manually constrain them.
We simplified lists to function similar to duplicators with au-
tomatically created self-referencing constraints. Smith said
this modification corresponded with her objectives, and ap-
plied the new lists in her illustrations (fig 6 j) and abstract
work (fig 7 c). Producing numerous variations with Para led
Smith to identify the need for versioning functionality.

Reflection: Smith reflected on how Para was uniquely suited
for combining abstract and illustrative forms: I think there’s
a space between abstraction and representation4 . . . this am-
biguous in-between space where Para could be very useful.

She also described how the process behind a work of art was
as important as the work itself: I want to create things that
surpass the tool and it’s not so obvious that some other pro-
cess did all the interesting work.

As a result, she felt more successful when using Para in a way
that obscured the use of obvious procedural aesthetics. In the
closing interview, Smith described how working with Para
had changed the way she thought about her own art process:
The inclusion of Para changes not just the visual output. It
changes the process, and that’s a lot of what I think about —
how the tool changes the way you make things.

DISCUSSION
The components of Para provide one entry point into pro-
cedural art. Here we discuss the creative opportunities that
resulted from the design of those components through three
principle questions. Was Para compatible with the skills of
manual artists? Did Para offer meaningful creative oppor-
tunities? What are the limitations of direct manipulation?
In addressing these questions, we provide the following rec-
ommendations for building expressive direct manipulation
procedural tools: 1) Extending manual drawing tools with
declarative relationships allows experienced artists to lever-
age existing skills. 2) It is possible to preserve expressive-
ness in direct-manipulation procedural tools by designing the
tool around a small number of procedural concepts that can
be combined in different ways to produce different outcomes.
3) Procedural tools with concretely represented relationships
can enable productive exploration of form, color, and compo-
sition for professional artists.

Was Para compatible with the skills of manual artists?
The design of Para was partially based on the theory that
a direct-manipulation procedural tool would be compatible
with manual practice and enable manual artists to leverage
existing skills. Two points of evidence support this theory.
First, there are clear stylistic similarities between Smith’s
4Referring to abstract vs realistic (illustrative) imagery.

prior work and the pieces she created with Para, despite being
produced with different tools. The forms and compositions in
her abstract paintings mirror her abstract work in Para, and
her use of color and blending in her watercolor illustrations
corresponds with her Para illustrations. These commonali-
ties suggest that in addition to making use of its procedural
affordances, Smith was able to transfer her prior skills and
practices to Para. Second, both Smith and participants in the
workshop described Para as “intuitive”, “enjoyable” and “fa-
miliar,” in contrast to their experience with textual tools.

The intuitive qualities of Para are important because, aside
from supporting accessibility, intuitive tools support spe-
cific creative practices. People who think through move-
ment, intuition, and visual impression require computational
tools that validate intuitive and relational mindsets in order
to be personally expressive [49]. In line with this, Smith
and many of our workshop participants stated that intuition
played an important role in their art. This suggests that direct-
manipulation procedural tools offer two ways to extend man-
ual practices: by enabling intuitive manipulation of proce-
dural relationships and by providing procedural techniques
that are aligned with both the affordances and interaction
paradigms of conventional graphic art tools.

Did Para offer meaningful creative opportunities?
A common trade-off in tool design is that the more accessi-
ble tools are, the less expressive they become. However, the
results of our studies demonstrate that Para’s accessibility did
not prohibit expressive creation by professionals. Although
our system contained a minimal number of procedural con-
cepts, the artwork people created contained procedural forms
and patterns comparable to those created with textual tools.
The sketches produced in the workshop (fig 5 d) demon-
strated radial distributions comparable in complexity and ap-
pearance to those created in Processing (fig 5 a-b). Smith’s il-
lustration demonstrates parametric modulation in color, scale,
and rotation across repeated forms, and her illustrative and
abstract work contains generative forms and patterns. Para-
metric variation, generative form, and complexity via repe-
tition are considered to be primary affordances of applying
programming to art and design [38].

Para also offered new creative opportunities by facilitating
new processes for making art. Smith described how the abil-
ity to rapidly produce and manipulate complex compositions
facilitated exploration and iteration. She also felt that the
generativity in Para led to new ways of thinking about the
creative process, describing it as “a way of expanding one’s
creative mind”. Finally, Smith identified unique creative op-
portunities in combining procedural exploration with manual
control, which she noted were unique to Para. Overall study
results and participant artwork demonstrate how a small num-
ber of reconfigurable procedural concepts can support new
processes and aesthetics through procedural exploration of
form, color, and composition, as well as support new ways
of thinking about the creative process itself.

What are the limitations of direct manipulation?
Despite the intuitive qualities of direct-manipulation tools,
they are limited in some ways compared to textual tools. In

Para, people sometimes struggled with interpreting and con-
trolling complex relationships. Symbolic textual expressions
can concisely and unambiguously represent complex relation-
ships in ways that images cannot [26]. People also became
frustrated attempting to make precise patterns through di-
rect selection, or in managing the organization of particularly
complex compositions. In comparison to Para, and direct-
manipulation software in general, textual programming tools
can better support numerical evaluation and accuracy. Fur-
thermore, computational abstraction as expressed through
textual tools can greatly aid in complex organizational tasks.

While the representational nature of programming can create
a barrier for manual creation, it also offers opportunities for
reflection. Code can simultaneously serve as a functional ob-
ject and as a record of ideas and process [22]; thus, writing
code can enable active reflection on the relationships that de-
fine one’s work. Understanding abstraction is difficult [52],
and our studies demonstrate that on its own, direct manipu-
lation does not lead to the understanding of representational
concepts. However, given the confidence people expressed
when using Para, direct manipulation of procedural relation-
ships may provide a way to make the challenge of learning
abstract representational tools more approachable. Alan Kay
theorized that direct manipulation might aid in the learning
process of representational systems by helping people to de-
velop mental maps of abstract concepts [16]. With further
development, tools like Para could assist manual artists in
the process of understanding computational abstraction and
benefiting from its application to their art. Overall we be-
lieve there is potential expand the expressiveness of systems
like Para through close integration of direct manipulation and
textual programming paradigms. Systems that enable artists
to express relationships textually and then experiment with
them through direct manipulation may scaffold learning and
support new forms of creative expression.

CONCLUSION AND FUTURE WORK
Through development and evaluation of a direct manipula-
tion procedural art tool, we demonstrate that it is possible to
support concrete and manual creation while simultaneously
enabling expressive forms of procedural design. Going for-
ward, we see additional opportunities to evaluate procedural
direct manipulation within the context of self efficacy and our
system’s correspondence with the mental models of visual
artists. We are also excited about the creative opportunities
of procedural direct manipulation, and the potential for fu-
ture systems that integrate this approach with other forms of
programming. Overall, we see Para as a platform for devel-
oping new technologies that further support the combination
of manual and procedural creation.

ACKNOWLEDGMENTS
We thank all the artists that participated in our workshop.
Special thanks to Kim Smith, and also to Michael Craig for
contributing to development. We would also like to thank N.
Gillian, R. Jacobs, D. Mellis, A. Zoran, E. Natzke, D. Ito, the
Dynamic Medium Group, and M. Resnick and the Lifelong
Kindergarten Group.

REFERENCES
1. Cycling ’74. 2016. Max.

http://cycling74.com/products/max

2. Robert Aish. 2012. DesignScript: origins, explanation,
illustration. In Computational Design Modelling.
Springer, 1–8.

3. Arduino. 2017. Arduino Introduction.
http://www.arduino.cc/en/Guide/Introduction

4. J. Ashkenas and DocumentCloud. 2010. Backbone.js.
http://backbonejs.org

5. Alan F. Blackwell. 2014. Palimpsest: A layered
language for exploratory image processing. Journal of
Visual Languages Computing 25, 5 (2014), 545 – 571.
DOI:
http://dx.doi.org/10.1016/j.jvlc.2014.07.001

6. Ravi Chugh, Jacob Albers, and Mitchell Spradlin. 2015.
Program Synthesis for Direct Manipulation Interfaces.
CoRR abs/1507.02988 (2015).
http://arxiv.org/abs/1507.02988

7. Scott Davidson. 2007. Grasshopper.
http://www.grasshopper3d.com.

8. Experimental Media Research Group. 2004. NodeBox.
http://www.nodebox.net

9. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo
Yang, and Scott R. Klemmer. 2008. Design As
Exploration: Creating Interface Alternatives Through
Parallel Authoring and Runtime Tuning. In Proceedings
of the 21st Annual ACM Symposium on User Interface
Software and Technology (UIST ’08). ACM, New York,
NY, USA, 91–100.
http://doi.acm.org/10.1145/1449715.1449732

10. B. Harvey. 1991. Symbolic Programming vs. the A.P.
Curriculum. The Computing Teacher 56 (February
1991), 27–29.

11. Brian Hempel and Ravi Chugh. 2016. Semi-Automated
SVG Programming via Direct Manipulation. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 379–390. DOI:
http://dx.doi.org/10.1145/2984511.2984575

12. Raphaël Hoarau and Stéphane Conversy. 2012.
Augmenting the Scope of Interactions with Implicit and
Explicit Graphical Structures. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA,
1937–1946. DOI:
http://dx.doi.org/10.1145/2207676.2208337

13. MakerBot Industries. 2015. Thingiverse Customizer.
http://www.thingiverse.com/apps/customizer

14. Jennifer Jacobs and Leah Buechley. 2013. Codeable
Objects: Computational Design and Digital Fabrication
for Novice Programmers. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’13). ACM, New York, NY, USA, 1589–1598.

15. Jennifer Jacobs, Mitchel Resnick, and Leah Buechley.
2014. Dresscode: supporting youth in computational
design and making. In Constructionism. Vienna, Austria.

16. Alan C. Kay. 1990. User Interface: A Personal View.
Addison-Wesley. 191–207 pages.

17. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. 2014. Kitty: Sketching
Dynamic and Interactive Illustrations. In Proceedings of
the 27th Annual ACM Symposium on User Interface
Software and Technology (UIST ’14). ACM, New York,
NY, USA, 11.

18. Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki
Umetani, and George Fitzmaurice. 2016. SKUID:
Sketching Dynamic Drawings Using the Principles of
2D Animation. In ACM SIGGRAPH 2016 Talks
(SIGGRAPH ’16). ACM, New York, NY, USA, Article
84, 1 pages. DOI:
http://dx.doi.org/10.1145/2897839.2927410

19. Scott R. Klemmer, Björn Hartmann, and Leila
Takayama. 2006. How Bodies Matter: Five Themes for
Interaction Design. In Proceedings of the 6th
Conference on Designing Interactive Systems (DIS ’06).
ACM, New York, NY, USA.

20. Andrew J. Ko, Brad A. Myers, and Htet Htet Aung.
2004. Six Learning Barriers in End-User Programming
Systems. In Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing
(VLHCC ’04). IEEE Computer Society, Washington,
DC, USA, 199–206.
http://dx.doi.org/10.1109/VLHCC.2004.47

21. J. Lehni and J. Puckey. 2011. Paper.js.
http://paperjs.org/

22. Golan Levin. 2003. Essay for Creative Code. http://
www.flong.com/texts/essays/essay_creative_code

23. Z. Lieberman, T. Watson, and A. Castro. 2015.
openFrameworks. http://openframeworks.cc/about

24. Maryam M. Maleki, Robert F. Woodbury, and Carman
Neustaedter. 2014. Liveness, Localization and
Lookahead: Interaction Elements for Parametric Design.
In Proceedings of the 2014 Conference on Designing
Interactive Systems (DIS ’14). ACM, New York, NY,
USA.

25. John H. Maloney and Randall B. Smith. 1995.
Directness and liveness in the morphic user interface
construction environment. In Proceedings of the 8th
annual ACM symposium on User interface and software
technology. ACM.

26. M. McCullough. 1996. Abstracting Craft: The Practiced
Digital Hand. The MIT Press, Cambridge,
Massachusetts.

27. W.J. Mitchell. 1990. The Logic of Architecture: Design,
Computation, and Cognition. MIT Press, Cambridge,
MA, USA.

http://cycling74.com/products/max
http://www.arduino.cc/en/Guide/Introduction
http://backbonejs.org
http://dx.doi.org/10.1016/j.jvlc.2014.07.001
http://arxiv.org/abs/1507.02988
http://www.grasshopper3d.com
http://www.nodebox.net
http://doi.acm.org/10.1145/1449715.1449732
http://dx.doi.org/10.1145/2984511.2984575
http://dx.doi.org/10.1145/2207676.2208337
http://www.thingiverse.com/apps/customizer
http://dx.doi.org/10.1145/2897839.2927410
http://dx.doi.org/10.1109/VLHCC.2004.47
http://paperjs.org/
http://www.flong.com/texts/essays/essay_creative_code
http://www.flong.com/texts/essays/essay_creative_code
http://openframeworks.cc/about

28. Brad Myers, Scott E Hudson, and Randy Pausch. 2000.
Past, present, and future of user interface software tools.
ACM Transactions on Computer-Human Interaction
(TOCHI) 7, 1 (2000), 3–28.

29. Brad A Myers. 1990. Taxonomies of visual
programming and program visualization. Journal of
Visual Languages & Computing 1, 1 (1990), 97–123.

30. Lora Oehlberg, Wesley Willett, and Wendy E. Mackay.
2015. Patterns of Physical Design Remixing in Online
Maker Communities. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA.

31. Stephen Oney, Brad Myers, and Joel Brandt. 2012.
ConstraintJS: Programming Interactive Behaviors for
the Web by Integrating Constraints and States. In
Proceedings of the 25th Annual ACM Symposium on
User Interface Software and Technology (UIST ’12).
ACM, New York, NY, USA.

32. Stephen Oney, Brad Myers, and Joel Brandt. 2014.
InterState: A Language and Environment for Expressing
Interface Behavior. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’14). ACM, New York, NY, USA.

33. Fatih Kursat Ozenc, Miso Kim, John Zimmerman,
Stephen Oney, and Brad Myers. 2010. How to Support
Designers in Getting Hold of the Immaterial Material of
Software. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’10). ACM,
New York, NY, USA.

34. S. Papert. 1980. Mindstorms: children, computers, and
powerful ideas. Basic Books.

35. C. Reas and B. Fry. 2004. Processing.
http://processing.org

36. C. Reas and B. Fry. 2007. The Processing Handbook.
MIT Press, Cambridge, Massachusetts, USA.

37. C. Reas and B. Fry. 2016. Processing Overview.
http://processing.org/overview

38. C. Reas, C. McWilliams, and LUST. 2010. Form and
Code. Princeton Architectural Press, New York, NY,
USA.

39. Mitchel Resnick, John Maloney, Andrés
Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. 2009.
Scratch: Programming for All. Commun. ACM 52, 11
(Nov. 2009).

40. Mitchel Resnick and Brian Silverman. 2005. Some
Reflections on Designing Construction Kits for Kids. In
Proceedings of the 2005 Conference on Interaction
Design and Children (IDC ’05). ACM, New York, NY,
USA.

41. David Roedl, Shaowen Bardzell, and Jeffrey Bardzell.
2015. Sustainable Making? Balancing Optimism and
Criticism in HCI Discourse. ACM Trans. Comput.-Hum.
Interact. 22, 3 (June 2015).

42. J. Rosenkrantz and J. Louis-Rosenberg. 2015. Nervous
System Tools. http://n-e-r-v-o-u-s.com/tools

43. Toby Schachman. 2012. Alternative Programming
Interfaces for Alternative Programmers. In Proceedings
of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and
Software (Onward! 2012). ACM, New York, NY, USA.

44. Toby Schachman. 2015. Apparatus: a hybrid graphics
editor / programming environment for creating
interactive diagrams. In Strange Loop.

45. Donald Schön and John Bennett. 1996. Bringing Design
to Software. ACM, New York, NY, USA, Chapter
Reflective Conversation with Materials.

46. Ben Shneiderman. 1984. The Future of Interactive
Systems and the Emergence of Direct Manipulation. In
Proc. Of the NYU Symposium on User Interfaces on
Human Factors and Interactive Computer Systems.
Ablex Publishing Corp., Norwood, NJ, USA, 1–28.
http://dl.acm.org/citation.cfm?id=2092.2093

47. Ivan E. Sutherland. 1998. Seminal Graphics. ACM, New
York, NY, USA, Chapter Sketchpad: a Man-machine
Graphical Communication System, 391–408.
http://doi.acm.org/10.1145/280811.281031

48. Cesar Torres and Eric Paulos. 2015. MetaMorphe:
Designing Expressive 3D Models for Digital
Fabrication. In Proceedings of the 2015 ACM SIGCHI
Conference on Creativity and Cognition (C&C ’15).
ACM, New York, NY, USA.

49. S. Turkle and S. Papert. 1992. Epistemological
Pluralism and the Revaluation of the Concrete. Journal
of Mathematical Behavior 11, 1 (March 1992).

50. B. Victor. 2011. Dynamic Pictures. http:
//worrydream.com/DynamicPicturesMotivation.

51. B. Victor. 2012. Learnable Programming: Designing a
programming system for understanding programs.
http://worrydream.com/LearnableProgramming.

52. B. Victor. 2013a. Drawing Dynamic Data Visualizations
Addendum. http://worrydream.com/
DrawingDynamicVisualizationsTalkAddendum.

53. B. Victor. 2013b. Drawing Dynamic Data Visualizations
(Talk). http://vimeo.com/66085662.

54. Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel
Wigdor. 2016. Object-Oriented Drawing. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 4610–4621. DOI:
http://dx.doi.org/10.1145/2858036.2858075

http://processing.org
http://processing.org/overview
http://n-e-r-v-o-u-s.com/tools
http://dl.acm.org/citation.cfm?id=2092.2093
http://doi.acm.org/10.1145/280811.281031
http://worrydream.com/DynamicPicturesMotivation
http://worrydream.com/DynamicPicturesMotivation
http://worrydream.com/LearnableProgramming
http://worrydream.com/DrawingDynamicVisualizationsTalkAddendum
http://worrydream.com/DrawingDynamicVisualizationsTalkAddendum
http://vimeo.com/66085662
http://dx.doi.org/10.1145/2858036.2858075

	Introduction
	Background and Related Work
	Ease of use versus expressiveness
	Concrete interaction versus symbolic representation

	Para software design and implementation
	Interface
	Constraints
	Lists
	Duplicators

	Evaluations
	Workshop study methodology
	Limitations
	Workshop results
	In-depth study methodology
	In-depth study results

	Discussion
	Was Para compatible with the skills of manual artists?
	Did Para offer meaningful creative opportunities?
	What are the limitations of direct manipulation?

	Conclusion and Future Work
	Acknowledgments
	REFERENCES

