
18 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E

focus 1

speed and ease of development over robustness and
maintainability.

How do opportunistic programmers make
these trade-offs between speed of development and
maintainability, and how does the structure of their
work compare to more formal software engineering
practices? Through our recent research on how op-
portunistic programming enables prototyping and
exploration, we’ve identified five traits of the op-
portunistic approach: Opportunistic programmers
build software using high-level tools, and often
add new functionality via copy-and-paste from the
Web. They iterate rapidly, consider code imperma-
nent, and find debugging particularly challenging.
We’re using these traits to guide the development
of tools that explicitly support opportunism (for
more about these tools, see http://hci.stanford.edu/
opportunistic).

Hacking in the Wild and in the Lab
We became interested in opportunistic program-
ming while conducting fieldwork with exhibit de-
signers at the Exploratorium, a hands-on science
and art museum in San Francisco. All the exhibits
are developed in-house, and most have interactive
computational components (see Figure 1).

Exhibit designers conceive and implement in-
teractive exhibits that convey a particular scientific
phenomenon. Many of these exhibits require cus-
tom software. For example, a microscopy exhibit
required exhibit designers to retrofit a research-
grade microscope with a remote, kid-friendly in-
terface. Although designers must construct work-
ing exhibits, they have little responsibility for an
exhibit’s long-term maintainability or robustness.
(A separate division of the museum commercial-
izes successful exhibits and sells them to other

P eople often write code to prototype, ideate, and discover. To do this, they
work opportunistically, emphasizing speed and ease of development over
code robustness and maintainability. Quickly hacking a program together
can provide both practical and learning benefits for novices and experts:1 pro-

fessional programmers and designers prototype to explore and communicate ideas,2,3
scientists program laboratory instruments, and entrepreneurs assemble complex spread-
sheets to better understand their business.4 Their diverse activities share an emphasis on

Five principles
of opportunistic
programming can
help guide the
development of tools
that explicitly support
prototyping in code.

Joel Brandt, Philip J. Guo, Joel Lewenstein, and Scott R. Klemmer,
Stanford University

Mira Dontcheva, Adobe Systems

Opportunistic Programming:
Writing Code to Prototype,
Ideate, and Discover

end - us er s o f t war e eng ine er ing

© IEEE, 2009. This is the author's version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version was published in IEEE Software, Volume 26, Issue 5 (Sept/Oct 2009). http://dx.doi.org/10.1109/MS.2009.147

 September/October 2009 I E E E S o f t w a r E 19

museums throughout the country.) They there-
fore focus on exploring many ideas as rapidly as
possible.

To get a more fine-grained understanding of
how people work opportunistically, we brought
20 programmers into our lab. They prototyped
a Web-based chat room using HTML, PHP, and
JavaScript. We gave them five specifications, such
as “the chat room must support multiple concur-
rent users and update without full page reloads.”
For details of this lab study, see “Two Studies of
Opportunistic Programming: Interleaving Web
Foraging, Learning, and Writing Code.”5 For the
five principles we uncovered from the field and lab,
read on.

Glue together High-Level Components
At the Exploratorium, designers select task-specific
building blocks and build systems largely by writ-
ing “glue” code. For example, the nature obser-
vation exhibit Out-quiet Yourself teaches visitors
how to walk quietly. In this exhibit, museum visi-
tors walk over a bed of gravel. During the walk, the
total amount of sound produced is measured and
displayed on a large screen. From a performance
perspective, all of the audio processing necessary
for this exhibit could have been easily done on a
single computer. To do this, however, the exhibit
designer would have had to write a large amount
of custom code. Instead, he used a series of hard-
ware audio compressors and mixers to do most of
the processing. He only needed to write two pieces
of glue code: a small Python script to calculate the
sum, and a simple Adobe Flash interface to display
that sum. Our group has witnessed similar behav-
ior in other domains.3

We observed that participants were most suc-
cessful at bricolage development when components
were themselves fully functioning systems. For ex-
ample, we asked the Out-quiet Yourself designer
why he used specialized audio hardware instead
of a software library. He explained that he could
experiment with the hardware independently from
the rest of the system, which made understanding
and tweaking the system much easier.

In general, gluing together fully functioning
systems helps reduce several of the barriers that
less-experienced programmers face.6 First, be-
cause whole systems are easy to experiment with,
programmers can more easily understand how the
pieces work and can immediately intuit how to use
them. Second, because a clear boundary between
each piece exists, programmers avoid coordination
barriers. There’s exactly one way to connect the
pieces, and it’s easy to see what’s happening at the
connection point.

Familiarity and fitness to task are two impor-
tant considerations when selecting components.
What factors affect these considerations’ relative
weight? At the Exploratorium and in our lab study,
composition and reuse occurred at multiple scales,
and a component’s scale played an important role
in determining whether it would be used. Specifi-
cally, successful opportunistic programmers val-
ued fitness over familiarity when selecting tools for
large portions of the task. For example, an exhibit
designer who was an excellent Python program-
mer learned a new language (Max/MSP) to build
an exhibit on sound because the new language was
better suited to audio processing than Python.

At smaller scales of composition, the familiarity/
fitness trade-off shifts to favor the familiar. For

(a) (b) (c)

Figure 1. The Exploratorium, a hands-on science and art museum in San Francisco. Exhibit designers handle
all phases of development. They design interactions, construct physical components, and develop software.
(a, b) Their work environment is filled with computers, electronics equipment, and manuals for a diverse set of
software. (c) A typical exhibit comprises many off-the-shelf hardware components hooked together using high-level
languages such as Adobe Flash.

20 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

example, when we asked one participant in our
lab study if he knew of libraries to make Ajax
calls easier, he responded, “Yes … but I don’t un-
derstand how Ajax works at all. … If I use one of
those libraries and something breaks, I’ll have no
idea how to fix it.” Only three participants in this
study used external Ajax libraries, and these in-
dividuals already had significant experience with
them.

An alternate approach to gluing a system to-
gether from scratch using high-level components is
to find and tailor an existing system that almost
does the desired task. In our Web programming
lab study, three participants did this, and two of
them failed to meet some of the specifications. Le-
veraging an existing system let them make quick
initial progress, but the last mile was difficult. For
example, one participant built upon an existing
content-management system with a chat module
that met all but two specifications. He spent 20
minutes finding the system and 10 minutes install-
ing it, meeting the first three specifications faster
than all other participants. However, he took an
additional 58 minutes to meet one more specifica-
tion (adding time stamps to messages), and he was
unable to meet the final specification (adding a
chat history) in the remaining hour. The other two
participants who modified existing systems faced
similar, although not as dramatic, frustrations.

The distinction between co-opting and tai-
loring an existing system is subtle but impor-
tant. To co-opt a system, the programmer must
understand only how to use its interface; to tai-
lor a system, the programmer must understand
how it’s built. The main challenge of tailoring
an existing system is building a mental model of
its architecture. This can be difficult and time-
consuming even in the best of circumstances.
Even when the code is well documented, the
programmer is familiar with the tools involved,
and the original code’s authors are available for
consultation, mental-model formation can take
considerable time.7 Large software is inherently
complex, and trying to understand a system by

looking at source code is like trying to under-
stand a beach by looking at a grain of sand.

add functionality via Copy-
and-Paste from the web
Even when programmers build software from
existing components, they must write some glue
code to hook these pieces together. Copy-and-
paste programming—writing code by iteratively
searching for, copying, and modifying short
blocks of code (fewer than 30 lines) with desired
functionality—is a staple of opportunistic pro-
gramming. An earlier study by our research group
observed students learning to use a new program-
ming framework. One-third of participants’ code
consisted of modified versions of examples found
in the framework’s documentation.8

Copy-and-paste programming is most benefi-
cial when the programmer is working in an un-
familiar domain. For example, most participants
in our lab study who were unfamiliar with Ajax
chose to copy and paste snippets of Ajax setup
code rather than learn to write it from scratch.

However, copy-and-paste isn’t simply for nov-
ices; several participants were expert PHP pro-
grammers and still used this practice for some
code pieces, such as the snippet in Figure 2. When
one participant searched for and copied a piece of
PHP code necessary to connect to a MySQL data-
base, he commented that he had “probably writ-
ten this block of code a hundred times.” Upon
further questioning, he reported that he always
wrote the code by copy-and-paste, even though
he fully understood what it did. He claimed that
it was “just easier” to copy-and-paste it than to
memorize and write it from scratch.

This observation brings up interesting ques-
tions about how programmers locate promising
code. In opportunistic programming, the pri-
mary source is through Web search.5 Indeed, in
our lab study, each participant spent on average
19 percent of his or her programming time on the
Web, spread out over 18 distinct sessions. These
sessions occurred throughout development and
varied greatly in length. Figure 3 summarizes
participants’ Web access behavior.

How do these Web sessions differ? At one end
of the spectrum, participants spent tens of minutes
learning a new concept (for example, by reading
a tutorial on Ajax-style programming). On the
other end, participants delegated their memory
to the Web, spending tens of seconds to remind
themselves of syntactic details of a concept they
knew well (for example, by looking up the struc-
ture of a foreach loop). Between these two extremes,

<?php
$res = mysql_query(“SELECT id, name FROM table”);

while ($row = mysql_fetch_array($res)) {
 echo “id: “.$row[“id”].”
\n”;
 echo “name: “.$row[“name”].”
\n”;
}
?>

Figure 2. A typical
snippet of PHP code
(querying a database
and iterating through
returned values) that
nearly all lab study
participants copied from
examples found on the
Web. Most participants
reported that they could
have written the code
from scratch, but it was
faster to copy and paste.

 September/October 2009 I E E E S o f t w a r E 21

participants used the Web to clarify their existing
knowledge (such as by viewing an HTML form’s
source to understand the underlying structure).
Understanding these intentions is crucial to de-
signing tools that help programmers better lever-
age the Web.

Iterate rapidly
Successful opportunistic programmers in our lab
study favored a short edit-debug cycle. Figure 4
gives an overview of the length of each participant’s
edit-debug cycles. For the vast majority of subjects,
50 percent of the cycles were less than 30 seconds
long; for all subjects, 80 percent of the cycles were
less than 5 minutes long. These times are much
shorter than those commonly reported during tra-
ditional software engineering. In a 2006 O’Reilly
technical blog entry, a Java developer estimated
that an average cycle takes 31 minutes and a short
cycle takes 6.5 minutes.9

Frequent iteration is a necessary part of learning
unfamiliar tools and understanding found code.
So, successful opportunistic programmers select
tools that speed up iteration. For example, pro-
grammers prefer interpreted languages over com-
piled languages because they emphasize human
productivity over code execution speed.10

Consider Code Impermanent
Programmers often use code written opportunisti-
cally to ideate and explore the design space when

prototyping. It’s a kind of breadth-first program-
ming in which many ideas are thrown away early.
Because developers throw away much of the code
they write opportunistically, they often consider
code impermanent. This perception affects how
they write code in two important ways.

First, programmers spend little time docu-
menting and organizing code that they write op-
portunistically. An Exploratorium exhibit designer
remarked that it simply wasn’t worth his time to
document code because he “ended up throwing so
much away.” Instead of documenting their code,
successful opportunistic programmers document
their process. For example, one designer keeps
a project notebook for each exhibit. In this note-
book, he documents important knowledge gained
through the design process, such as a particular
tool’s strengths and weaknesses, or why a user in-
terface was unsuccessful. Programmers rarely re-
use code written opportunistically. Another exhibit
designer reported that he only reuses code when he
had written it “for the last project [he] worked on.
… Otherwise, it is just too much trouble.” How-
ever, both designers reported that with the right
kind of documentation, process reuse is common
and invaluable.

Second, the perceived impermanence of code
written opportunistically leads to code satisficing.
Programmers often implement functionality sub-
optimally during opportunistic development to
maintain flow. For example, a participant in our

Su
bj

ec
ts

 (b
y

to
ta

l W
eb

 u
se

)

Total
minutes Uses Searches

6
6
6
9

11
2

17
5
4

21
24
9

24
10
9

29
25
30
1

33

 7.2
 9.2
 9.5
 10.2
 14.2
 14.2
 15.9
 16.2
 18.1
 24.3
 25.4
 26.8
 30.2
 30.3
 34.8
 36.3
 37.8
 38.8
 42.8
 68.8

8
21
10
7

18
13
18
13
8

13
22
35
17
13
11
27
27
40
14
25

0 15 30 45 60 75
Minutes

90 105 120 135

Figure 3. An overview of participants’ use of the Web during the laboratory study. Subjects are sorted by total amount
of time spent using the Web. Light-blue bars indicate Web use sessions; dark bars indicate Web search instances.

22 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

lab was attempting to implement a fixed-length
queue using an array to store chat history. She was
a novice PHP programmer but an experienced pro-
grammer overall. She guessed at PHP array nota-
tion, and guessed wrong. Instead of looking up the
notation, she created 10 global variables, one for
each array element. She commented that although
she knew “there was a better way to do this,” she
“didn’t want to be interrupted.” Initially, it ap-
peared she made the right decision, because she
was able to test the history functionality only sec-
onds later. However, this led to problems down the
road. When implementing the dequeue operation,
she made a typographical error that took more
than 10 minutes to debug and clearly broke her
flow.

As this example illustrates, code satisficing can
be good and bad. Successful opportunistic pro-
grammers are good at weighing the trade-offs be-
tween implementing something correctly and im-
plementing something quickly.

face Unique Debugging Challenges
Opportunistic programming leads to unique de-
bugging challenges. First, as we mentioned ear-

lier, programmers often glue together many dis-
parate components. Development therefore often
occurs in multiple languages. For example, a
typical museum exhibit consists of a Flash user
interface that controls several stepper motors by
communicating with an Arduino microcontroller
via TCP/IP code written in Python! When proj-
ects use a federation of languages, programmers
often can’t effectively use sophisticated debug-
ging tools intended for a single language. Instead,
they must make state and control flow changes
visible through mechanisms such as print state-
ments. During our laboratory study, we observed
that experienced opportunistic programmers
would take proactive steps to make state visible
while adding new functionality. For example,
they would insert print statements preemptively
“just in case” they had to debug later. Less-
experienced programmers would have to make
state visible retroactively (for example, insert
print statements) after a bug occurred, which
was much more time-consuming. Interestingly,
the less-experienced programmers spent signifi-
cant time trying to determine whether a block of
code they had just written was even executing, let
alone whether it was correct!

Second, because there’s little or no up-front
design, system pieces often don’t have clean in-
terfaces (for example, communication between
functions might occur via a global variable). This
makes debugging more difficult, because pro-
grammers must maintain a mental model of the
entire system, not just of the particular compo-
nent they’re currently debugging.

Looking Forward
Guided by these five traits, we’re building tools
that explicitly support opportunistic programming.
We’ve identified four broad areas that could benefit
from better tool support.

Code foraging and reuse
The Web has made a wealth of example code
available, but finding and understanding relevant
code still remains challenging. Our group’s recent
work on d.mix explores a potential solution to
this problem.11 The d.mix tool makes it easier for
programmers to find and experiment with Web
APIs by letting them “sample” user interfaces that
already use these calls and then experiment with
the resulting code inside a wiki-like sandbox.

Another approach is to integrate Web search
into the development environment. Doing this
could improve search by leveraging the program-
mer’s current context (for example, languages,

0 20 40
Percent of cycles lasting different lengths of time

60 80 100

< 10
sec.

> 30
min.

10–30
sec.

30–60
sec.

1–2
min.

2–5
min.

5–10
min.

10–30
min.

96
93
28
98
74
73
56
72
78
76
52

128
39
72
81
33

246
65
43
97

Figure 4. A histogram of per-subject edit-debug cycle times in our
laboratory study. The black numbers on the left are the total number
of edit-debug cycles for each subject. Bar lengths are normalized
across subjects; a black line separates cycles shorter and longer than
5 minutes.

 September/October 2009 I E E E S o f t w a r E 23

libraries, and frameworks being used). Addition-
ally, we might be able to guide the user in adapt-
ing found code by collecting information on
how others have used that code. For example, if
the last 10 programmers to use an example all
changed a particular literal, the 11th programmer
probably should as well. We’re exploring these
ideas through Blueprint (http://hci.stanford.edu/
blueprint), a plug-in for Adobe Flex Builder.

Code authoring and Debugging
Debugging in opportunistic programming is diffi-
cult for three reasons:

A single project often uses many languages. ■

Code satisficing leads to code that isn’t well ■

encapsulated.
Developers often refuse to invest time in learn- ■

ing complex (but powerful) tools.

There’s significant value in building authoring
and debugging tools that embrace how opportu-
nistic programmers already work. For example,
print statements could be made a first-class tool.
A development environment could make insert-
ing or removing a print statement as easy as set-
ting a breakpoint. The debugger could then cap-
ture a wealth of context at each of these print
points: the call stack, the value of all local vari-
ables, and a snapshot of the program’s output.
Similarly, development environments could ex-
ploit the rapid iteration inherent in opportunistic
programming—code that was written 30 seconds
ago is likely the code the programmer wants to
test and debug. Simply indicating which lines of
code were executed during the program’s last run
would help programmers avoid time-consuming
debugging mistakes. Our group is exploring new
editing and debugging interactions using the Re-
hearse development environment (http://hci.
stanford.edu/rehearse).

Alternatively, tools might eliminate the need
for rapid iteration in specialized cases, such as
parameter tuning. Juxtapose, for example, lets
programmers easily tune parameter values at run-
time.12 Interactive tuning is particularly valuable
for exploring user interface variations, because
programmers can consider alternatives without
having to stop execution, edit, compile, execute,
and navigate to the previous state.

Version Control
Current version-control systems have large up-
front setup and learning costs, and aim to sup-
port the development of large systems by many

developers over months or years. What might ver-
sion control look like for opportunistic program-
ming? Our observations suggest that program-
mers would benefit from version control designed
for a 10-minute scale. Participants often wished
that they could revert to the code they had, for ex-
ample, two tests ago, or quickly branch and ex-
plore two ideas in parallel. Perhaps we could bring
single-user version control inside the editor, elimi-
nating the setup burden of current tools. Such a
system could perform code committal automati-
cally each time the code is executed, reducing the
need for programmers to think proactively about
version management. Finally, perhaps users could
browse past versions by viewing snapshots of the
execution, removing the burden of explicitly speci-
fying commit messages or applying tags.

Documentation
Although opportunistic programmers throw much
of their code away, the insights gained during the
entire design process are extremely valuable. An
Exploratorium exhibit designer commented that
whereas he rarely looked at code from prior proj-
ects, he often reviewed his process. Right now,
however, the tools for documenting process (such
as a notebook) are independent of the tools being
used (such as Adobe Flash). Bridging this divide is
a valuable path for future research.

U ltimately, opportunistic programming
is as much about having the right skills
as about having the right tools. As tools

improve, the skill set required of programmers
changes. In the future, programmers might not
need training in the language, framework, or li-
brary du jour. Instead, they’ll likely need ever-
increasing skills in formulating and breaking
apart complex problems. Programming might
become less about knowing how to do some-
thing and more about knowing how to ask the
right questions.

References
 1. S. Clarke, “What Is an End-User Software Engineer?”

End-User Software Eng., Internationales Begegnungs-
and Forschungszentrum für Informatik, 2007; http://
drops.dagstuhl.de/portals/index.php?semnr=07081.

 2. S. Houde and C. Hill, “What Do Prototypes Proto-
type?” Handbook of Human–Computer Interaction,
M. Helander, T.Ê. Landauer, and P. Prabhu, eds.,
Elsevier Science, 1997, pp. 367–382.

 3. B. Hartmann, S. Doorley, and S.R. Klemmer, “Hack-
ing, Mashing, Gluing: Understanding Opportunistic
Design,” IEEE Pervasive Computing, vol. 7, no. 3,
2008, pp. 46–54.

There’s
significant

value in building
authoring and

debugging
tools that

embrace how
opportunistic
programmers
already work.

24 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

 4. M. Schrage, Serious Play: How the World’s Best Com-
panies Simulate to Innovate, Harvard Business School
Press, 1999.

 5. J. Brandt et al., “Two Studies of Opportunistic Pro-
gramming: Interleaving Web Foraging, Learning, and
Writing Code,” Proc. 27th Int’l Conf. Human Factors
in Computing Systems (CHI 09), ACM Press, 2009, pp.
1589–1598.

 6. A.J. Ko, B.A. Myers, and H.H. Aung, “Six Learning
Barriers in End-User Programming Systems,” Proc.
2004 IEEE Symp. Visual Languages—Human-Centric
Computing (VLHCC 04), IEEE CS Press, 2004, pp.
199–206.

 7. T.D. LaToza, G. Venolia, and R. DeLine, “Maintaining
Mental Models: A Study of Developer Work Habits,”
Proc. 28th Int’l Conf. Software Eng. (ICSE 06), ACM
Press, 2006, pp. 492–501.

 8. R.B. Yeh, A. Paepcke, and S.R. Klemmer, “Iterative
Design and Evaluation of an Event Architecture for
Pen-and-Paper Interfaces,” Proc. 21st Ann. ACM Symp.
User Interface Software and Technology (UIST 08),
ACM Press, 2008, pp. 111–120.

 9. T.M. O’Brien, “Dead Time (… Code, Compile, Wait,
Wait, Wait, Test, Repeat),” blog, 30 Mar. 2006; www.
oreillynet.com/onjava/blog/2006/03/dead_time_code_
compile_wait_wa.html.

 10. J.K. Ousterhout, “Scripting: Higher-Level Program-
ming for the 21st Century,” Computer, vol. 31, no. 3,
1998, pp. 23–30.

 11. B. Hartmann et al., “Programming by a Sample: Rap-
idly Creating Web Applications with d.mix,” Proc.
20th Ann. ACM Symp. User Interface Software and
Technology (UIST 07), ACM Press, 2007, pp. 241–250.

 12. B. Hartmann et al., “Design as Exploration: Creating
Interfaces through Parallel Authoring and Runtime
Tuning,” Proc. 21st ACM Symp. User Interface Soft-
ware and Technology (UIST 08), ACM Press, 2008, pp.
91–100.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Joel Brandt is a PhD candidate in Stanford University’s Human-Computer Interaction
Group and a research intern at Adobe Systems. His research interests include opportunistic
programming, an approach to building software often undertaken by nonprofessional
programmers such as designers, scientists, and business professionals. Brandt has an MS in
computer science from Washington University. Contact him at jbrandt@cs.stanford.edu.

Philip J. Guo is a PhD candidate in Stanford University’s Computer Science Depart-
ment. His research interests include how computer programmers work, how to automatically
find bugs in the code they write, and how programmers deal with these bugs. Guo has an
MEng in electrical engineering and computer science from the Massachusetts Institute of
Technology. Contact him at pg@cs.stanford.edu.

Joel Lewenstein is a software engineer at GoodGuide.com. His research interests
include the use of external resources during programming, specifically during opportunistic
programming. Lewenstein has a BS in symbolic systems, with a focus on human-computer
interaction, from Stanford University. Contact him at jlewenstein@cs.stanford.edu.

Mira Dontcheva is a research scientist in computer graphics and human-computer
interaction at Adobe Systems. Her research interests include building tools that improve
information foraging and sense-making on the Web. Dontcheva has a PhD in computer
science from the University of Washington. Contact her at mirad@adobe.com.

Scott R. Klemmer is an assistant professor of computer science at Stanford Uni-
versity, where he codirects the Human-Computer Interaction Group. His research focuses
on understanding and building tools that support the prototyping process. Klemmer has a
PhD in computer science from the University of California, Berkeley. Contact him at srk@
cs.stanford.edu.

IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

For submission information and author guidelines,
please visit www.computer.org/internet/author.htm

Engineering and Applying the Internet

