

Remixing The Web: Enhancing
Tailoring Using Programmable Proxies

Abstract
This note introduces re:mix, an infrastructure for
presenting tailored web applications as services. How can
users most effectively tailor this web content for mobile
consumption? Currently, there are two approaches to
tailoring web interfaces: in-browser extensions and
programmable proxies. Browser extensions facilitate
direct-manipulation tailoring, leverage the massive
browser-based developer ecology, and build upon a
ubiquitous platform. Unfortunately, existing browser-
based tailoring systems yield a client-side application,
inhibiting their portability, especially to stripped-down
mobile browsers. Programmable proxies enable the
tailored application to be deployed as a service, but
current systems lack the environmental benefits of the
browser. This paper introduces a “best-of-both-worlds”
approach to tailoring web pages through the insight that
the browser platform can also serve tailored applications.

Introduction
There is significant and increasing value in supporting
users’ customization and tailoring of existing web
applications. Current tools such as the Greasemonkey
browser extension have gained significant traction.
Unfortunately, these existing tools break the service
nature of web applications crucial to the success of the
mobile Internet: because their runtime web page rewriting
occurs browser-side, the improvements a user makes to a

 Joel Brandt
Stanford HCI Group

Computer Science Dept.

Stanford, CA 94305 USA

jbrandt@cs.stanford.edu

Leslie Wu
Stanford HCI Group

Computer Science Dept.

Stanford, CA 94305 USA

lwu2@cs.stanford.edu

Scott R. Klemmer
Stanford HCI Group

Computer Science Dept.

Stanford, CA 94305 USA

srk@cs.stanford.edu

Figure 1. When a desktop web page (left) is automatically
transcoded (top right), the result often requires excessive
scrolling. An application tailored with re:mix (bottom right) can be
more concise and support automation, such as form pre-filling.

 2

public transportation trip planner at home (Figure 1) will
not be reflected on his or her office PC or mobile device.
Conversely, server-side tools such as programmable
proxies allow the service nature of applications to be
retained, but are more difficult to program because they
lack the closeness of mapping and robust software
libraries present in browser-side tools. Our work combines
these approaches, introducing an architecture that allows
the browser to both provide a platform for tailoring at
design-time and serve tailored applications to other
devices at run-time.

Several factors affecting software tailoring have changed
since early computer systems began supporting user-
driven customizations. First, software designers
increasingly develop their user interfaces and make their
data accessible in standardized markup languages (such
as HTML or XML). Second, software applications are
increasingly deployed as a “software as a service,”
meaning that they are centrally managed and network-
based. The combination of these two factors—ubiquitous
markup and always-on services—has enabled lead users
to recombine elements from existing applications and
services in novel ways, such as in data mash-ups [3].

This work was motivated by the observation that the web
is available—but not necessarily usable—in an increasing
diversity of situations through mobile computing devices.
This note reviews existing browser-side and server-side
tools for tailoring, and present a new tailoring architecture
called re:mix that combines the benefits of both
approaches.

Remixing the Web
Before beginning this work, we conducted a need-finding
study (not reported on here) on mobile information access
needs. We found that tailoring existing applications

typically involves two classes of tasks: making user
interface modifications (e.g. reducing visual clutter, or
automating a commonly-performed behavior such as
logging in), and adding functionality by mixing in data
from infrastructure services (e.g. pre-filling a form with
current location data). We introduce the term remixing to
refer to tailoring that involves these classes of
modification. Our example in Figure 1 involves both
classes: the page is visually restructured to fit the
constraints of a mobile device and the user’s current
location is “mixed in” to the form automatically.

A distinct but related approach to customizing web
applications is mash-ups, where two or more services or
data feeds are used as building blocks to create a new
application. With very few exceptions, components
intended for use in mash-ups provide data but not a user
interface. As a result, developers must typically create a
UI from scratch. (The notable exception to this rule is the
Google Maps API, which may hint at why 47% of the 2928
mash-ups listed on programmableweb.com put it to use.)
Similarly, tools for creating mash-ups, such as Yahoo’s
Pipes, are typically data-centric: they facilitate remixing of
data, but do not specifically address the question of
tailoring the user interface of interactive web applications.
Rather, Pipes and data-flow approaches in general assume
that data itself is paramount, rather than the combination
of data and a well-designed interface.

Related Work
Prior work in web tailoring falls into two areas: browser
extensions for client-side tailoring and programmable
proxies that interpose between the web browser and web
servers.

Browser-side tools [1, 4] have the advantage of easily
supporting the logged-in and AJAX-enabled web.

 3

Additionally, being browser-based facilitates direct
manipulation editing. Browser-side tools often provide a
mechanism for users to share their customization with
others—the userscripts.org website for sharing
Greasemonkey scripts is one such example. However,
these customizations are generally shared manually
through an upload or synchronization process. Even when
the sharing is automatic—as with Koala [4]—the
customized web applications can only be accessed from
browsers that have the customization tool installed. This
points to an important shortcoming of current browser-
based tools: tailored applications do not retain their
original software-as-a-service nature.

In contrast, programmable web proxies [2] support
tailored applications that retain their software-as-a-service
architecture. Traditionally, however, these tools do not
address the modern web because they do not execute
JavaScript, nor robustly deal with session management.
Finally, programmable proxies currently require a great
deal of technical expertise to program because
appropriate development and debugging tools have not
matured.

Tools are beginning to emerge which span this gap—
Highlight is one such example [5]. In this system, web
pages are tailored client-side using a browser plugin.
These tailorings are then uploaded to a server which runs
a special web browser that offers these tailorings as
services. The major distinction between our work and
Highlight is that Highlight supports one type of client-side
tailoring. Our architecture is indifferent to the method of
tailoring—users can use any Firefox extension they like to
tailor web pages, and these pages are then served as a
service by their computer to any other device.

Architecture Support for Tailoring
Supporting customizations within the browser
environment allows the customization tool to access pages
as the user sees them, affected by style sheets, session
identifiers, and security restrictions. For the same reasons,
our re:mix architecture implements a programmable
proxy on top of the Firefox browser (see Figure 2). We
have implemented the re:mix proxy inside POW, a Firefox
extension that runs an HTTP server inside the browser.

At design time, users create remixes using the Firefox
extensions of their choice. At runtime, two browsers are
employed: a server-side browser kernel performs the
rewriting, enabling any browser—even a lightweight one—
to be the client. A web request proceeds as follows: First,
the client browser requests a page from the proxy. The
proxy loads the requested page inside a full-featured
browser that has the appropriate extensions to perform
the necessary remixing. After the page is fully loaded and
the remixing is complete, the proxy transmits the
resulting document object model (DOM) to the client.

Many mobile browsers and desktop browsers on public
terminals do not allow the user to specify an HTTP proxy. In
order to support such browsers, we use a URL-based
approach similar to that employed by content-caching
services such as CoralCDN. Users simply request a remixed
version of a page through a small modification to the URL.
For example, a remixed version of 511.org might be
available at http://10.0.0.1:8080/transit.511.org/tripplanner/,
where “10.0.0.1:8080” is the IP address and port of the
user’s re:mix proxy, and the remainder of the URL is the
URL to be remixed.

As discussed earlier, remixing often involves mixing in
small bits of data from other services. Often times, the
data to be mixed in may not be accessible by a cleanly-

Design-time

user web
core

HTTP
client server

Run-time

user

HTTP
server

client browser

web
core

HTTP
client server

proxy browser

web
core

HTTP
client

Figure 2. The re:mix architecture at
design time and runtime.

 4

defined web API, nor can it easily be scraped, because it
only exists on the logged-in web. In these situations,
re:mix can be used recursively to access the desired
information. This is perhaps made most clear with an
example: a user may wish to mix her contacts’ status
information from a social network service into her webmail
application. This status information is not available via an
API, and only exists on the logged-in web. Because re:mix
presents itself as a URL-based proxy, it can be used
recursively by the extensions that do the rewriting. For
example, the Greasemonkey script that rewrites the
webmail interface can access the social network data by
requesting a logged-in webpage through re:mix. Note that
it would not be possible to access this information using
Greasemonkey alone. While Greasemonkey can modify a
page on the logged-in web once it is loaded in the
browser, it cannot explicitly fetch information from the
logged-in web.

Conclusions and Future Work
The application tailoring described in this paper was
implemented without extensive tool support for
automated deployment of tailored applications as a
service. Currently, deploying these remixed applications is
currently time consuming, and requires a great deal of
technical web expertise. This is not surprising—our work
thus far has focused on making third-party application
tailoring possible, not on making it easier.

On a technical level, more work also needs to be done in
securing re:mix, disclosing the nature of a re:mix script to
a user, and in understanding the security implications of
tailoring extant web applications. As it is, managing trust
across web services is not easily done, but security
researchers have recently proposed mash-up-level
security mechanisms which may prove useful in future
work.

In addition to addressing the needs of the mobile web, we
believe that the open architecture described could enable
tailoring of existing web applications for accessibility and
universal access. Firefox is an accessible browser, but the
application web at large is not universally accessible. The
re:mix architecture may provide a way for proprietary
assistive technology web clients, such as screen readers,
to better integrate with existing proprietary applications,
in such a way that the tailored, more accessible
applications are still available as large-scale services.

References
[1] Bolin, M., M. Webber, P. Rha, T. Wilson, and R. C.
Miller. Automation and Customization of Rendered Web
Pages. In ACM Symposium on User Interface Software
and Technology. ACM Press, 2005.

[2] Grimm, R., G. Lichtman, et al. Na Kika: Secure
Service Execution and Composition in an Open Edge-Side
Computing Network. In Proceedings of USENIX
Symposium on Networked Systems Design and
Implementation. pp. 169-82, 2006.

[3] Hartmann, B., L. Wu, K. Collins, and S. R. Klemmer.
Programming by a Sample: Rapidly Creating Web
Applications with d.mix. In Proceedings of UIST: ACM
Symposium on User Interface Software and Technology.
ACM Press, 2007.

[4] Little, G., T. A. Lau, A. Cypher, J. Lin, E. M. Haber,
and E. Kandogan. Koala: Capture, Share, Automate,
Personalize Business Processes on the Web. In
Proceedings of SIGCHI Conference on Human Factors in
Computing Systems. ACM Press, 2007.

[5] Nichols, J, Z. Hua, J. Barton. Highlight: A System for
Creating and Deploying Mobile Web Applications. In
Proceedings of UIST: ACM Symposium on User Interface
Software and Technology. ACM Press, 2008.

