

EXAMPLE-CENTRIC PROGRAMMING:

INTEGRATING WEB SEARCH INTO THE DEVELOPMENT PROCESS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Joel R. Brandt

December 2010

 ii

© Joel R. Brandt 2010

All Rights Reserved

 iii

Joel R. Brandt

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Scott R. Klemmer) Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Terry Winograd)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(John K. Ousterhout)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Mira Dontcheva)

Approved for the Stanford University Committee on Graduate Studies

(Scott R. Klemmer) Principal Advisor

(Terry Winograd)

dissertation for the degree of Doctor of Philosophy.

(John K. Ousterhout)

dissertation for the degree of Doctor of Philosophy.

(Mira Dontcheva)

 iv

ABSTRACT

The Web is fundamentally changing programming. The increased prevalence of online

source code—shared in code repositories, documentation, blogs and forums—enables

programmers to build applications opportunistically by iteratively searching for, modifying,

and combining examples. These Web resources are a ubiquitous and essential part of

programming: in one of our studies, programmers spent 19% of their time consuming

relevant online information. But our development tools haven't yet embraced these changes.

How do we leverage the latent opportunity of Web-based example code in the next

generation of programming tools?

This dissertation explores the roles that online resources play in creating software,

making contributions in three areas. First, it presents a taxonomy of programmer Web usage.

Programmers turn to the Web with a variety of goals: they learn new skills, transfer

knowledge to new domains, and delegate their memory to the Web. Using our taxonomy, we

suggest opportunities for tool support of programmer Web usage.

 Second, this thesis contributes interaction techniques for lowering the cost of

locating relevant example code on the Web. We created Blueprint, a task-specific search

engine that embeds Web search inside the development environment. A laboratory study

and large-scale deployment of Blueprint found that it enables participants to write

significantly better code and find example code significantly faster than with a standard Web

browser and search engine, and may cause a fundamental shift in how and when

programmers search the Web.

 v

Finally, this thesis contributes interaction techniques for helping programmers

understand examples. Efficient understanding and effective adaptation of examples hinges on

the programmer's ability to quickly identify a small number of relevant lines interleaved

among a larger body of boilerplate code. By augmenting the code authoring experience with

execution visualization and linking of related lines, programmers can understand examples

significantly faster.

 vi

For my father, Richard Brandt
who enjoyed building things even more than I do

 vii

ACKNOWLEDGMENTS

Thank you to all of my advisors, both formal and informal, who helped me through the Ph.D.

process. Scott Klemmer provided amazing guidance, and most importantly, helped me

develop good taste as a researcher. Mira Dontcheva both provided excellent guidance and

put in a great deal of the grunt work necessary to make the systems presented in this

dissertation a reality. I cannot overstate the amount of appreciation I feel for the help of

these two individuals, and for the opportunities they gave me. Thank you as well to John

Ousterhout and Terry Winograd. They were incredibly supportive throughout my Ph.D.,

and most importantly, were adept at asking the really hard questions that motivate great

research. Early in my research career, Pat Hanrahan showed me by example what it meant to

have intellectual curiosity.

Thank you, as well, to all of my collaborators: Björn Hartmann, Philip Guo, Joel

Lewenstein, Marcos Weskamp, Iván Cavero Belaunde, William Choi, Ben Hsieh, Vignan

Pattamatta, and Noah Weiss. It was a pleasure working with all of them. And, thank you to

the friends who made the journey worthwhile: Jacob Leverich, Theresa Curtis, Jeff

McMahan, Kat White, Wilmot Li, and Sharma Hendel.

Most of all, thank you to my family. My mother and father, Carol and Richard, and

my brother Eric have provided encouragement through the hard times and shared in my joy

during the good times. And, thank you to Lindsay. I hope I can be half as supportive of her in

her future endeavors as she has been of me. Finally, thank you to my dog Jake — he liked the

first draft of my thesis better than anyone else.

 viii

I was supported by the Andreas Von Bechtolsheim Fellowship Fund, part of the Stanford

Graduate Fellowship program, during my final two years at Stanford. I was also partially

funded by the Stanford MediaX organization and by NSF Grant IIS-0745320 while

completing this research. The Blueprint project was further supported by Adobe Systems,

Inc. Intel donated hardware for multiple projects.

 ix

TABLE OF CONTENTS

CHAPTER 1	 INTRODUCTION .. 1	

1.1	 Thesis Contributions..2	

1.2	 The Programmer as a Knowledge Worker...3	

1.3	 Solution Overview and Dissertation Roadmap..3	

1.3.1	 Understanding Web Use During Opportunistic Programming ...4	

1.3.2	 Tool Support for Example-Centric Programming..5	

1.4	 Statement on Multiple Authorship and Prior Publications ...6	

CHAPTER 2	 RELATED WORK... 8	

2.1	 Barriers in Programming...9	

2.2	 Role of the Web in Overcoming Barriers ..9	

2.3	 Example-Centric Development ..10	

2.3.1	 Sources of Example Code..11	

2.3.2	 Task-Specific Search Interfaces ...12	

2.3.3	 Tools for Understanding Examples...13	

CHAPTER 3	 OPPORTUNISTIC PROGRAMMING ... 15	

3.1	 Hacking in the Wild: Fieldwork with Museum Exhibit Designers...16	

3.2	 Opportunstic Programming in the Lab..17	

3.3	 Characteristics of Opportunistic Programming ...17	

3.3.1	 Glue Together High-Level Components that Fit the Task ..17	

3.3.2	 Leverage Examples to Add New functionality via Copy-and-Paste ..21	

3.3.3	 Iterate Rapidly..22	

3.3.4	 Consider Code Impermanent ...23	

 x

3.3.5	 Face Unique Debugging Challenges ...25	

CHAPTER 4	 UNDERSTANDING HOW PROGRAMMERS USE THE WEB 26	

4.1	 Study 1: Examining Web Use in the Lab..26	

4.1.1	 Method ...26	

4.1.2	 Results ...31	

4.1.2.1	 Goals driving Web use ...32	

4.1.2.2	 Just-in-time learning of new skills ...32	

4.1.2.3	 Clarification of existing knowledge ...35	

4.1.2.4	 Reminders about forgotten details ..37	

4.2	 Study 2: Web Search Log Analysis...39	

4.2.1	 Method ...40	

4.2.1.1	 Determining query type ...42	

4.2.1.2	 Determining query refinement method ...42	

4.2.1.3	 Determining Web page type..43	

4.2.2	 Results ...43	

4.2.2.1	 Programmers rarely refine queries, but are good at it ...46	

4.2.2.2	 Query type predicts types of pages visited...47	

4.3	 Limitations of Our Findings ..47	

4.4	 Five Key Insights and Implications for Tools..48	

CHAPTER 5	 BLUEPRINT: INTEGRATING WEB SEARCH
INTO THE DEVELOPMENT ENVIRONMENT .. 51	

5.1	 Scenario: Developing with Blueprint ..54	

5.2	 Implementation ..55	

5.2.1	 Client-Side Plug-In..56	

 xi

5.2.2	 Blueprint Server ..57	

5.2.3	 Extracting Example Code and Descriptions ...58	

5.2.3.1	 Classifying example code ...60	

5.2.3.2	 Extracting text and running examples ...61	

5.2.3.3	 Keeping track of changes to examples..62	

5.3	 Evaluation: Studying Blueprint in the Lab...62	

5.3.1	 Method ...62	

5.3.2	 Results ...64	

5.3.2.1	 Directed task ...64	

5.3.2.2	 Exploratory task ..65	

5.3.2.3	 Areas for improvement ..66	

5.3.3	 Discussion...66	

5.3.3.1	 Where Blueprint fails ...67	

5.4	 Design Space of Web Tools for Programmers..68	

CHAPTER 6	 LONGITUDINAL STUDY OF BLUEPRINT:
DEPLOYMENT TO 2,024 USERS .. 70	

6.1	 Insights from Interviewing Active Users...72	

6.1.1	 The Benefits of Consistent, Example-Centric Results
Outweigh the Drawbacks of Missing Context..72	

6.1.2	 Blueprint is Symbiotic with Existing IDE Features ..73	

6.1.3	 Blueprint is Used Heavily for Clarifying Existing Knowledge
and Reminding of Forgotten Details. ...73	

6.2	 Method ...74	

6.3	 Results ...75	

6.4	 Exploratory Analysis...76	

 xii

6.4.1	 Using Blueprint as a Resource to Write Code by Hand is Common...77	

6.4.2	 People Search for Similar Things Using Blueprint and Community Help,
but the Frequencies are Different...77	

6.4.3	 Both Interface Modalities are Important ..78	

6.5	 User Retention ...79	

6.6	 Conclusion ...79	

CHAPTER 7	 REHEARSE: HELPING PROGRAMMERS
UNDERSTAND EXAMPLES .. 80	

7.1	 Observing Example Adaptation ..82	

7.1.1	 Observations ...83	

7.2	 Rehearse ...84	

7.2.1	 Execution Highlighting ..84	

7.2.2	 Related Lines...85	

7.2.3	 Implementation ..85	

7.3	 Pilot Study of Rehearse...86	

7.3.1	 Method ...86	

7.3.2	 Results ...87	

7.3.3	 Discussion...88	

7.4	 Conclusion ...89	

CHAPTER 8	 FUTURE DIRECTIONS ... 90	

8.1	 Toward a Complete Picture of Knowledge Work on the Web..90	

8.2	 Further Tool Support for Opportunistic Programming..91	

8.3	 The Future of Programming..94	

REFERENCES .. 95	

 xiii

LIST OF FIGURES

Figure 3.1: The Exploratorium Museum in San Francisco, California. All exhibits are
created in-house. Exhibit designers are responsible for all phases of
development: designing interactions, constructing physical components,
and developing software. They are jacks-of-all-trades, their work
environment (a,c) filled with computers, electronics equipment, and
manuals for a diverse set of software. A typical exhibit (b) comprises many
off-the-shelf components hooked together using high-level languages such as
Adobe Flash..16	

Figure 3.2: A typical snippet of PHP code (querying a database and iterating through
returned values) that nearly all lab study participants copied from examples
found on the Web...21	

Figure 3.3: Histogram of per-subject edit-debug cycle times in our laboratory study.
Each bar represents one subject. Total number of edit-debug cycles for each
subject are given by the black number on each bar, and bar length is
normalized across subjects. A black line separates cycles of less than and
greater than 5 minutes. Across all subjects, 80% of edit-debug cycles were less
than 5 minutes in length...23	

Figure 4.1: List of chat room features that lab study participants were asked to
implement. The first four features are fairly typical; the fifth, retaining a
limited chat history, is more unique..28	

Figure 4.2: Screenshot of one participant’s completed chat room. This participant met
all of the specifications. ...29	

Figure 4.3: Overview of when participants referenced the Web during the laboratory
study. Subjects are sorted by total amount of time spent using the Web. Web
use sessions are shown in light blue, and instances of Web search are shown
as dark bars..30	

Figure 4.4: All 360 Web use sessions amongst the 20 participants in our lab study,
sorted and plotted by decreasing length (in seconds). The left vertical bar
represents the cutoff separating the 10% longest sessions, and the right bar
the cutoff for 50% of sessions. The dotted line represents a hypothetical
uniform distribution of session lengths...31	

Figure 4.5: Example of how participants used Web search to remind themselves of
forgotten low-level syntax. Here, the programmer forgot the exact name of
the function used to access the result of a database query. Searching for “php

 xiv

fetch array” allowed him to quickly retrieve the exact name (highlighted)
without visiting any additional Web pages...38	

Figure 4.6: Web query result interface for Adobe’s Community Help search portal. This
portal is implemented using a Google Custom Search Engine, and displays
results in a format nearly identical to general-purpose search engines such as
Google. ..39	

Figure 4.7: How query types changed as queries were refined. In both graphs, each bar
sums all ith queries over all sessions that contained an ith query (e.g., a
session with three queries contributed to the sums in the first three bars).
The graph on the left is a standard histogram; the graph on the right presents
the same data, but with each bar’s height normalized to 100 to show changes
in proportions as query refinements occurred..46	

Figure 5.1: The Blueprint plug-in for the Adobe Flex Builder development environment
helps programmers locate example code. A hotkey places a search box (A) at
the programmer’s cursor position. Search results (B) are example-centric;
each result contains a brief textual description (C), the example code (D),
and, when possible, a running example (E). The user’s search terms are
highlighted (F), facilitating rapid scanning of the result set. Blueprint allows
users to rate examples (G). ...52	

Figure 5.2: Example-centric programming with Blueprint. The user presses a hotkey to
initiate a search; a search box appears at the cursor location (1). Searches are
performed interactively as the user types; example code and running
examples (when present) are shown immediately (2). The user browses
examples with the keyboard or mouse, and presses Enter to paste an example
into her project (3). Blueprint automatically adds a comment containing
metadata that links the example to its source (4). ...53	

Figure 5.3: Architecture of the Blueprint system. The process of servicing a user’s query
is shown on the left; the background task of parsing Web pages to extract
examples is shown on the right...56	

Figure 5.4: Comparative laboratory study results. Each graph shows the relative
rankings of participants. Participants who used Blueprint are shown as filled
squares, those who used Community Help are shown as open squares.65	

Figure 5.5: Design space of tools to aid programmers’ Web use. Blueprint is designed to
address the portion of the space shown with a shaded background.69	

Figure 6.1: Screenshot of the Blueprint Web page on Adobe Labs. Blueprint was made
publicly available on May 27, 2009. ..71	

 xv

Figure 6.2: Comparison of Blueprint (left) and Commmunity Help (right) search
result interfaces for the query “Alert”. The desired information is
immediately available in Blueprint; Community Help users must click the
first result and scroll part way down the page to find the same information................78	

Figure 7.1: The Rehearse development environment, visualizing the execution of an
example application. The user interacts with the running application (A).
Lines that have recently executed are highlighted in dark green (B). As
execution progresses, lines executed less recently fade to light green (C).....................81	

Figure 7.2: Rehearse indicating lines related to the line currently being edited. The user’s
cursor is circled in green; related lines are identified by orange highlights in the
left margin. Display of related lines is triggered by a hotkey...85	

 xvi

LIST OF TABLES

Table 4.1: Demographic information on the 20 participants in our lab study. Experience
is given in number of years; self-rated proficiency uses a Likert scale from 1 to
7, with 1 representing “not at all proficient” and 7 representing “extremely
proficient”. ..27	

Table 4.2: Summary of characteristics of three points on the spectrum of Web use goals............33	

Table 4.3: For hand-coded sessions of each type, proportion of first queries of each type
(252 total sessions). Statistically significant differences between columns are
shown in bold, * entry means only significant at p < 0.05. ..44	

Table 4.4: For queries in hand-coded sessions of each type, proportion of result clicks to
Web sites of each type (401 total queries). Statistically significant
differences between columns are shown in bold. ..44	

Table 4.5: For each refinement type, proportion of refinements of that type where
programmers clicked on any links prior to the refinement (31,334 total
refinements). ...44	

Table 4.6: For queries of each type, proportion of result clicks leading programmer to
Web pages of each type (107,343 total queries). Statistically significant
differences between columns are shown in bold. ..44	

Table 7.1: Task completion times for treatment (T) and control (C) participants.
Participants using Rehearse completed the first task faster than those in the
control condition (p < 0.06)...88	

 1

CHAPTER 1 INTRODUCTION

The Web is fundamentally changing programming [44, 79]. The increased prevalence of

online source code—shared in code repositories, documentation, blogs and forums [1, 2, 24,

71]—enables programmers to opportunistically build applications by iteratively searching

for, modifying, and combining examples [19, 40]. Consider Jenny, a programmer we

observed in the lab. At one point during the programming process, she exclaimed “Good

grief, I don’t even remember the syntax for forms!” Less than a minute after this outburst, she

had found an example of an HTML form online, successfully integrated it into her own code,

adapted it for her needs, and moved onto a new task. As she continued to work, she

frequently interleaved foraging for information on the Web, learning from that information,

and authoring code. Over the course of two hours, she turned to the Web for help 27 times,

accounting for 28% of the total time she programming.

Reliance on the Web for instructive examples is a key part of what we call

opportunistic programming. This approach emphasizes speed and ease of development over

code robustness and maintainability [19, 40]. Programmers engage in opportunistic

 2

programming to prototype, ideate, and discover—to address questions best answered by

creating a piece of functional software. This type of programming is widespread, performed

by novices and experts alike: it happens when designers build functional prototypes to

explore ideas, when scientists write code to control laboratory experiments, when

entrepreneurs assemble complex spreadsheets to better understand how their business is

operating, and when professionals adopt agile development methods to build applications

quickly [19, 61, 64, 76].

1.1 THESIS CONTRIBUTIONS

This dissertation provides an understanding of how programmers use online resources to

support an opportunistic approach to development. Specifically, it offers contributions in

three areas:

1. A taxonomy of programmer Web usage — Programmers turn to the Web with a variety

of goals: they learn new skills, transfer knowledge to new domains, and delegate their

memory to the Web. Using this taxonomy, we suggest opportunities for tool support

of programmer Web usage.

2. Interaction techniques for lowering the cost of locating relevant example code —

Embedding a task-specific search engine in the development environment can

significantly reduce the cost of finding information and thus enable programmers to

write better code more easily. Moreover, lowering the cost of search can

fundamentally change how programmers approach routine tasks.

3. Interaction techniques for helping programmers understand examples — Efficient

understanding and effective adaptation of examples hinges on the programmer's

 3

ability to quickly identify a small number of relevant lines interleaved among a larger

body of boilerplate code. By augmenting the code authoring experience with

execution visualization and linking of related lines, programmers can understand

examples significantly faster.

1.2 THE PROGRAMMER AS A KNOWLEDGE WORKER

The Web is changing many types of knowledge work [18]. Going forward, Web resources are

likely to play an increasingly important role in a broad range of problem solving domains.

This dissertation studies programmers as an exemplar form of knowledge worker.

Moreover, the ability to think computationally is becoming an important skill in

many types of knowledge work [83]. Scaffidi, Shaw, and Myers estimate that in 2012 there

will be 13 million people in the USA that describe themselves as “programmers” [76]. It

seems likely that several times that number will program to some extent. There is significant

value in providing better tool support for this nascent population.

By using programming as a “petri dish,” we endeavor to contribute broadly

applicable principles that further our understanding of knowledge work on the Web.

1.3 SOLUTION OVERVIEW AND DISSERTATION ROADMAP

We begin by reviewing related work (Chapter 2). The remainder of the thesis is divided into

two parts: empirical work that aims to understand how and why programmers use the Web,

and tool building that aims to support and amplify the role that Web-based example code

plays in the development process.

 4

1.3.1 UNDERSTANDING WEB USE DURING OPPORTUNISTIC PROGRAMMING

We conducted three studies to better understand opportunistic programming, and

specifically, the role that the Web plays in this approach. We began by conducting fieldwork

with exhibit designers at the Exploratorium Museum in San Francisco, California (Chapter

3). Designers routinely faced the “build or borrow” question [13]: build a piece of

functionality from scratch, or locate and adapt existing systems? Designers showed a distinct

preference for bricolage, often combining and tailoring many off-the-shelf components in

Rube-Goldberg-esque systems rather than building from scratch [39, 55, 59, 82, 84].

After completing our fieldwork, we studied opportunistic development in the lab

(§4.1). We observed 20 programmers as they each spent 2.5 hours building a Web-based

chat room application. All participants used online resources extensively, accounting for

19% of the time they spent programming. More specifically, programmers leveraged online

resources with a range of goals: They engaged in just-in-time learning of new skills and

approaches, clarified and extended their existing knowledge, and reminded themselves of

details deemed not worth remembering.

Does programmers’ use of the Web “in the wild” have the same range of goals, or is

this result an artifact of the particular lab setting? (Perhaps, for example, the performance

pressure of being observed encouraged learning over trial-and-error experimentation.) To

answer this, a second study (§4.2) analyzed one month of queries to an online programming

portal, examining the lexical structure of queries, types of refinements made, and classes of

result pages visited. These logs also exhibited traits that suggest the Web is being used for

learning and reminding.

 5

The results from these studies contribute to a theory of online resource usage in

programming, and suggest opportunities for tools to facilitate online knowledge work.

1.3.2 TOOL SUPPORT FOR EXAMPLE-CENTRIC PROGRAMMING

Despite the demonstrated importance of Web resources, current search tools are not

designed to assist with programming tasks and are wholly separate from editing tools.

Chapter 5 explores the hypothesis that embedding a task-specific search engine in the

development environment can significantly reduce the cost of finding information and thus

enable programmers to write better code more easily.

We describe the design, implementation, and evaluation of Blueprint, a Web search

interface integrated into the Adobe Flex Builder development environment that helps users

locate example code. Blueprint automatically augments queries with code context, presents a

code-centric view of search results, embeds the search experience into the editor, and retains a link

between copied code and its source. A comparative laboratory study (§5.3) found that

Blueprint enables participants to write significantly better code and find example code

significantly faster than with a standard Web browser.

Our laboratory study of Blueprint suggested that it helped programmers write code

more quickly. But we also wondered: After programmers integrated an example-centric

search tool into their daily practice, would they then approach the task of programming

differently? A large-scale longitudinal deployment of Blueprint addressed this question.

Chapter 6 details our one-and-a-half- year deployment, focusing specifically on a

comparative analysis of the first three months of log data from approximately 2,024 users.

With Blueprint, programmers use search more frequently, and for a broader range of tasks.

 6

Improved Web search tools like Blueprint enable programmers to quickly locate

relevant examples. However, existing code editors offer little support for helping users

understand examples. Chapter 7 proposes that adapting an example quickly and accurately

hinges on the programmer's ability to quickly identify a small number of relevant lines

interleaved among a larger body of boilerplate code. This insight is manifest in Rehearse, a

code editing environment with two unique features: First, Rehearse links program execution

to source code by highlighting each line of code as it is executed. This enables programmers

to quickly determine which lines of code are involved in producing a particular interaction.

Second, after a programmer has found a single line applicable to her task, Rehearse

automatically identifies other lines that are also likely to be relevant. In a controlled

experiment, participants using Rehearse adapted example code significantly faster than those

using an identical editor without these features.

This thesis concludes with directions for future research (Chapter 8). Specifically, it

suggests a number of empirical questions aimed at gaining a more complete picture of

knowledge work on the Web. It also examines the issue of tool support for opportunistic

programming more broadly, suggesting a number of directions for research outside the

domain of example-centric programming.

1.4 STATEMENT ON MULTIPLE AUTHORSHIP AND PRIOR PUBLICATIONS

The research presented in this dissertation was completed with the help of many talented

individuals. While I initiated and led the projects described here, I want to acknowledge all

of my collaborators. Without them, this research could not have been realized. Specifically,

the fieldwork presented in Chapter 2 was completed with the help of Indrajit Khare, and was

 7

supported by William Meyer from the Exploratorium. Philip Guo and Joel Lewenstein

contributed heavily to the empirical work presented in Chapter 4 and Marcos Weskamp and

Iván Cavero Belaunde were instrumental in designing and deploying Blueprint at large scale.

Vignan Pattamatta, Ben Hsieh, and William Choi all contributed to Rehearse. Finally, my

advisors Mira Dontcheva and Scott R. Klemmer played a very important role in all of the

research presented in this dissertation.

This dissertation is partially based on papers published previously in ACM

conference proceedings and IEEE publications. I am the primary author on all of these

publications. Specifically, the studies presented in Chapter 4 were published at CHI 2009

[11], and the Blueprint system was published at CHI 2010 [12]. Background on

Opportunistic Programming was published in IEEE Software [10]. A paper describing

Rehearse (Chapter 7) is under submission at the time of publication of this dissertation.

 8

CHAPTER 2 RELATED WORK

Assimilating knowledge is a key part of the programming process [25, 62]. For example,

when adding functionality to an existing system, programmers must first understand how

relevant parts of the existing system work, and how new libraries or frameworks will interact

(Chapter 4). Similarly, when debugging, programmers must reconcile opaque information

about execution state with an often incomplete understanding of how the code works [51].

Ever since Grace Hopper and her colleagues created the first compiler [46], programmers

have been relying on tools to help manage this knowledge work.

This chapter first explores the barriers that programmers face when trying to

assimilate knowledge. We then look at how examples can play a role in overcoming these

barriers. Examples aid in analogical reasoning, and allow people to avoid “re-inventing the

wheel” by copying prior successful actions. Finally, we survey existing tools for helping

programmers leverage examples.

 9

2.1 BARRIERS IN PROGRAMMING

Ko et al. observed novice programmers for a semester as they learned to use Visual Basic

.NET [50]. The researchers classified all occurrences of insurmountable barriers, defined as

problems that could only be overcome by turning to external resources. They identified six

classes of barriers. Below are the six barriers, each with an example of how the barrier might

be stated by a programmer:

Design — I don’t know what I want the computer to do.

Selection — I think I know what I want the computer to do, but I don’t know what to
use.

Coordination — I think I know what things to use, but I don’t know how to make
them work together.

Use — I think I know what to use, but I don’t know how to use it.

Understanding —I thought I knew how to do this, but it didn’t do what I expected.

Information —I think I know why it didn’t do what I expected, but I don’t know how
to check.

2.2 ROLE OF THE WEB IN OVERCOMING BARRIERS

Stylos and Myers offer evidence that the Web is being used to overcome many of these

barriers [79]. Specifically, general-purpose Web search is frequently used to enumerate

possible libraries when dealing with a “Selection” barrier. Once programmers have decided

on a library, they often encounter “use” and “understanding” barriers. In these situations,

programmers find examples useful. Unfortunately, official documentation rarely contains

examples, and so programmers again turn to Web search to find third-party example code.

Hoffmann et al. provide further support for the import of the Web in overcoming barriers

[44]. They classified Web search sessions about Java programming into 11 search goals (e.g.,

 10

beginner tutorials, APIs, and language syntax). They found that 34% were seeking API

documentation (likely “Selection” or “Use” barriers) and 21% were seeking troubleshooting

information (likely “Understanding” or “Information” barriers).

The Web is an important tool in overcoming barriers during programming. A goal of

this dissertation is to inform the design of better tools by providing a richer picture of how

and why programmers leverage Web content.

2.3 EXAMPLE-CENTRIC DEVELOPMENT

When programmers turn to online resources, they exhibit a strong preference for example

code over written descriptions of how to do a task [44, 79]. Why might this be? Examples

play an important role in analogical reasoning [32]: it is much more efficient to adapt

someone else’s successful solution than it is to start from scratch [66].

Because examples support creation, many programmers make examples a central

part of their development practice. In a recent study of programmers learning to use a new

UI toolkit, over one-third of participants’ code consisted of modified versions of examples

distributed with the toolkit [86]. In our studies (Chapter 4), we observed that programmers

frequently compared multiple similar examples during a single task. The use of comparison

has been shown to help people extract high-level principles [33]. As Gentner writes,

“comparison processes can reveal common structure … even early in learning when neither

example is fully understood.” [31].

Examples may also help people avoid mistakes. Psychologists divide human

performance into three levels: skill-based (e.g., walking), rule-based (e.g., navigating to

another office in a well-known building), and knowledge-based performance (e.g., planning a

 11

route to a place one has never been) [72]. We suggest that making examples a central part of

their programming practice allows developers to engage in rule-based performance more

often regardless of whether or not they are experts with the tools they are using. Broadly

speaking, the rule they follow to accomplish the goal of “implement functionality foo” is: 1.)

search for code that does foo; 2.) evaluate quality of found code; 3.) copy code into project;

4.) modify as necessary; 5.) test code. Because the individuals doing opportunistic

programming are programmers, it is easy for them to come up with the high-level goals, and

copy-and-paste programming gives them a rule by which to meet those goals, regardless of

familiarity with existing tools.

Effecting support for example-centric development requires two things. First, there

must be a source of relevant examples. Second, there must be a search interface that makes

specifying queries and evaluating results efficient.

2.3.1 SOURCES OF EXAMPLE CODE

Several systems use data-mining techniques to locate or synthesize example code [75, 81].

XSnippet uses the current programming context of Java code (e.g., types of methods and

variables in scope) to automatically locate example code for instantiating objects [75].

Mandelin et al. show how to automatically synthesize a series of method calls in Java that will

transform an object of one type into an object of another type, useful for navigating large,

complex APIs[60]. A limitation of this approach is that the generated code lacks the

comments, context, and explanatory prose found in tutorials.

An alternative is to use regular Web pages (e.g., forums, blogs, and tutorials) as sources

for example code. We believe using regular Web pages as sources for example code has two

 12

major benefits: First, it may provide better examples. Code written for a tutorial is likely to

contain better comments and be more general purpose than code extracted from an open

source repository. Second, because these pages also contain text, programmers can use

natural language queries and general-purpose search engines to find the code they are

looking for.

2.3.2 TASK-SPECIFIC SEARCH INTERFACES

Increasing reliance on the Web for learning is happening in a wide variety of knowledge work

domains. As a result, there has been recent interest in creating domain-specific search

interfaces (e.g., [8, 43, 63, 80, 85]). The Blueprint system presented in Chapter 5 follows the

template-based approach introduced by Dontcheva et al. [26, 27]. Displaying diverse results

in a consistent format through templates enables users to rapidly browse and evaluate search

results.

There are research [9, 44, 79] and commercial [1-3] systems designed to improve

search and code sharing for programmers. While these search engines are domain-specific

(that is, they are for programming), they are designed to support a broad range of tasks (e.g.,

finding libraries, looking up the order of method parameters, etc.). We suggest that there

might be benefit in designing a task-specific search interface oriented specifically towards

finding example code. This introduces a trade-off: a task-specific interface can be highly

optimized for a specific task, but will lose generality.

Current domain-specific search engines for programmers are completely independent

of the user’s development environment. What benefits might be realized by bringing search

into the development environment? CodeTrail explores the benefits of integrating the Web

 13

into the development environment by linking the Firefox browser and Eclipse IDE [34]. We

suggest there may be benefits from going one step further by placing search directly inside the

development environment. Again, this introduces a trade-off: such an integration will give up

the rich interactions available in a complete, stand-alone Web browser in favor of a more

closely-coupled interaction for a specific task.

2.3.3 TOOLS FOR UNDERSTANDING EXAMPLES

After a programmer locates helpful a example, she must then work to understand both the

example code and the existing code in her project. To help with this task, many

programming-by-demonstration (PBD) tools provide a visual link between source code and

execution at runtime [22, 23, 54]. For example, Koala [58] and Vegemite [56], two PBD

tools for the Web, highlight lines of script before they execute and highlight the effect on the

output as they execute. Similar visualizations are often provided in visual languages like

d.tools [38] and Looking Glass (the successor to Storytelling Alice) [37]. In all of these

systems, only a few “lines” of the user’s code need to execute per second for the user’s

application to be performant. In contrast, with general-purpose languages like Java, the user’s

code often must execute at thousands of statements per second. Current visualization

techniques do not adapt easily to this use case.

An alternative to realtime visualization of execution is to record an execution history

that can be browsed and filtered after execution completes. FireCrystal, for example, uses

this technique to aid programmers in understanding and debugging JavaScript [69]. There

are benefits and tradeoffs associated with both approaches. Offline browsing of execution

history affords the programmer more time to explore an issue in-depth, but it necessarily

 14

requires an extra step of locating the portion of the execution trace that is relevant. The

Whyline system offers an effective approach for browsing and filtering these execution traces

[51]. Whyline allows users to ask “why” and “why not” questions about program output,

which are used to automatically filter the execution trace for relevant data.

 15

CHAPTER 3 OPPORTUNISTIC PROGRAMMING

Quickly hacking something together can provide both practical and learning benefits [40].

Novices and experts alike often work opportunistically [19]: professional programmers and

designers prototype to explore and communicate ideas [40, 47], scientists program

laboratory instruments, and entrepreneurs assemble complex spreadsheets to better

understand their business [77]. Their diverse activities share an emphasis on speed and ease

of development over robustness and maintainability. Often, the code is used for just hours,

days, or weeks.

This chapter introduces opportunistic programming by detailing key characteristics

of this approach. Programmers exhibit a strong preference for working from examples over

building from scratch. To facilitate this, they leverage the Web for both the examples

themselves, and for the instructional content that helps them put the examples to use.

 16

3.1 HACKING IN THE WILD: FIELDWORK WITH
MUSEUM EXHIBIT DESIGNERS

We first observed the practice of opportunistic programming while conducting fieldwork

with exhibit designers at the Exploratorium Museum in San Francisco, California. The

Exploratorium is a hands-on museum about science and art. All of the exhibits are developed

in-house (see Figure 3.1), and the majority of these exhibits have interactive computational

components.

Exhibit designers are responsible for conceiving and implementing interactive

exhibits that will convey a particular scientific phenomenon. Many of these exhibits require

Figure 3.1: The Exploratorium Museum in San Francisco, California. All exhibits are created in-house. Exhibit
designers are responsible for all phases of development: designing interactions, constructing physical
components, and developing software. They are jacks-of-all-trades, their work environment (a,c) filled with
computers, electronics equipment, and manuals for a diverse set of software. A typical exhibit (b) comprises
many off-the-shelf components hooked together using high-level languages such as Adobe Flash.

 17

custom software. For example, an exhibit on microscopy required exhibit designers to

retrofit a research-grade microscope with a remote, kid-friendly interface. While designers

must construct working exhibits, they have little responsibility for the long-term

maintainability or robustness of an exhibit. (If an exhibit is successful, it is commercialized

by a separate division of the museum and sold to other museums throughout the country.)

As such, they focus on exploring many ideas as rapidly as possible over ensuring robustness

and maintainability.

3.2 OPPORTUNSTIC PROGRAMMING IN THE LAB

To get a more fine-grained understanding of how people work opportunistically, we

performed a lab study with 20 programmers. In this study, participants prototyped a Web-

based chat room using HTML, PHP, and JavaScript. We provided participants with five

broad specifications, like “the chat room must support multiple concurrent users and update

without full page reloads.” We report on this study in depth in Chapter 4; we offer a few high-

level results here to support our fieldwork findings and as motivation for the rest of the

thesis.

3.3 CHARACTERISTICS OF OPPORTUNISTIC PROGRAMMING

This section presents characteristics of an opportunistic approach to programming.

3.3.1 GLUE TOGETHER HIGH-LEVEL COMPONENTS THAT FIT THE TASK

At the Exploratorium, we observed that designers selected self-contained building blocks in

order to build systems largely by writing “glue” code. For example, a nature observation

exhibit called “Out Quiet Yourself” teaches individuals how to walk quietly. In this exhibit,

 18

museum visitors walk over a bed of gravel. During the walk, the total amount of sound

produced is measured and displayed on a large screen. All of the sound processing necessary

for this exhibit could have been completed in software using the same computer that

displays the total. Instead, the exhibit designers chose to use a series of hardware audio

compressors and mixers to do the majority of the processing. They only needed to write two

pieces of glue code: a small Python script to calculate the sum, and a simple Adobe Flash

interface to display that sum.

We observed that participants were most successful at bricolage development when

components were fully functioning systems by themselves. For example, we asked the

designer of the “Out Quiet Yourself” exhibit why he chose to use specialized audio hardware

instead of a software library. He explained that the hardware could be experimented with

independently from the rest of the system, which made understanding and tweaking the

system much easier.

In contrast, a digital microscope exhibit contained an off-the-shelf controller that

made it possible to adjust microscope settings (e.g., slide position and focus)

programmatically. This controller was driven by a custom piece of C++ code written by a

contractor several years ago, and could not be used without this software. When the remote

control of the microscope malfunctioned, it was very difficult to debug. Was the problem

with the controller itself (e.g., a dead motor) or was there a bug in the code? Answering such

questions was difficult because components could not be used independently and no current

employees understood the custom software.

In general, gluing together fully-functioning systems helps reduce several of the

barriers that less-experienced programmers face [50]: First, because whole systems are easy

 19

to experiment with, programmers are able to more easily understand how the pieces work,

and can immediately intuit how to use them. Second, because there is a clearly defined

boundary between each piece, programmers avoid coordination barriers. There is exactly

one way to connect the pieces, and it is easy to see what is happening at the connection

point.

Two important considerations when selecting components are the designer’s

familiarity with the component and the component’s fitness to the designer’s task. We call

this the familiarity/flexibility trade-off. What factors affect the relative weight of these

considerations? At the Exploratorium and in our lab study, composition and reuse occurred

at multiple scales, and a component’s scale played an important role in determining whether

it would be used. Specifically, successful opportunistic programmers valued fitness over

familiarity when selecting tools for large portions of the task. For example, an exhibit

designer who was an excellent Python programmer chose to learn a new language

(Max/MSP) to build an exhibit on sound because the new language was better suited to

audio processing than Python.

At smaller scales of composition, the familiarity/fitness trade-off shifts to favor the

familiar. For example, when one participant in our lab study was asked if he knew of libraries

to make AJAX calls (a particular programming paradigm used in the study) easier, he

responded “yes… but I don’t understand how AJAX works at all… if I use one of those

libraries and something breaks, I’ll have no idea how to fix it.” Only three participants in this

study used external libraries for AJAX, and in all cases these individuals already had

significant experience with those libraries.

 20

An alternate approach to gluing a system together from scratch using high-level

components is to find and tailor an existing system that almost does the desired task. In our

lab study, three individuals did this, and two of those failed to meet some of the

specifications. Leveraging an existing system allowed them to make quick initial progress, but

made the last mile difficult. For example, one participant built upon an existing content-

management system with a chat module that met all but two of the specifications. He spent

20 minutes finding and 10 minutes installing the system, meeting the first three

specifications faster than all other participants. However, it took him an additional 58

minutes to meet one more specification (adding timestamps to messages), and he was

unable to meet the final specification (adding a chat history) in the remaining hour. The

other two participants who modified existing systems faced similar, though not as dramatic,

frustrations.

The distinction between reusing and tailoring an existing system is subtle but

important. To reuse a system, the programmer only needs to understand how to use its

interface; to tailor a system, the programmer needs to understand how it is built. The main

challenge of tailoring an existing system is building a mental model [30] of its architecture.

This can be difficult and time-consuming even in the best of circumstances. Even when the

code is well documented, the programmer is familiar with the tools involved, and the authors

of the original code are available for consultation, mental model formation can still take a

considerable amount of time [52]. Large software is inherently complex, and trying to

understand a system by looking at source code is like trying to understand a beach by looking

at grains of sand one at a time.

 21

3.3.2 LEVERAGE EXAMPLES TO ADD NEW FUNCTIONALITY VIA COPY-AND-PASTE

Even when programmers build software from existing components, some glue code must be

written to hook these pieces together. Participants would frequently write this glue code by

iteratively searching for, copying, and modifying short blocks of example code (< 30 lines)

with desired functionality. We call this approach example-centric programming.

Example-centric programming is particularly beneficial when working in an

unfamiliar domain: modifying examples is easier than writing the code by oneself. For

example, the majority of participants in our lab study who were unfamiliar with the AJAX

programming paradigm chose to copy-and-paste snippets of AJAX setup code rather than try

to learn to write it from scratch.

However, example-centric programmming is not simply for novices; several

participants were expert PHP programmers and still employed this practice for some pieces

of code, like the one shown in Figure 3.2. When one participant searched for and copied a

piece of PHP code necessary to connect to a MySQL database, he commented that he had

“probably written this block of code a hundred times.” Upon further questioning, he

reported that he always wrote the code by looking at an example, even though he fully

<?php
$res = mysql_query("SELECT id, name FROM table");

while ($row = mysql_fetch_array($res)) {
 echo "id: ".$row["id"]."
\n";
 echo "id: ".$row[0]."
\n";
 echo "name: ".$row["name"]."
\n";
 echo "name: ".$row[1]."
\n";
}
?>

Figure 3.2: A typical snippet of PHP code (querying a database and iterating through returned values) that
nearly all lab study participants copied from examples found on the Web.

 22

understood what it did. He claimed that it was “just easier” to copy-and-paste it than to

memorize and write it from scratch.

This observation opens up interesting questions on how programmers locate

“promising” code. In opportunistic programming, we believe the primary source is through

Web search. Indeed, in our laboratory study, participants used the Web a great deal: On

average, each participant spent 19% of their programming time on the Web, spread out over

18 distinct sessions.

3.3.3 ITERATE RAPIDLY

Successful opportunistic programmers in our lab study favored a short edit-debug cycle.

Figure 3.3 presents an overview of the length of each participant’s edit-debug cycles. The

graph shows that for the vast majority of subjects, 50% of the cycles were less than 30

seconds in length, and for all subjects, 80% of the cycles were less than 5 minutes in length.

Only 2 subjects had edit-debug cycles of longer than 30 minutes, and each only underwent 1

such cycle. These times are much shorter than those commonly reported during traditional

software engineering; in a 2006 O’Reilly technical blog article, a Java developer estimates

that an average cycle takes 31 minutes and a short cycle takes 6.5 minutes [67].

We believe that frequent iteration is a necessary part of learning unfamiliar tools and

understanding found code. Therefore, successful opportunistic programmers select tools

that make iteration fast. For example, interpreted languages are preferred over compiled

languages because they emphasize human productivity over code execution speed [70].

Recently, the commercial software development has begun to embrace this observation. As

 23

just one datapoint, 63% of the code in Adobe's flagship photo management application,

Lightroom 2.0, is written in a scripting language [29].

3.3.4 CONSIDER CODE IMPERMANENT

Code written opportunistically is often used to ideate and explore the design space when

prototyping — it is a kind of “breadth-first” programming where many ideas are thrown away

early. Because much of the code they write opportunistically is thrown away, developers

often consider code to be impermanent. This perception affects the way code is written in

two important ways.

First, programmers spend little time documenting and organizing code that is

written opportunistically. Interestingly, this is typically the right decision. An exhibit

designer at the Exploratorium remarked that it simply wasn’t worth his time to document

Figure 3.3: Histogram of per-subject edit-debug cycle times in our laboratory study. Each bar represents one
subject. Total number of edit-debug cycles for each subject are given by the black number on each bar, and
bar length is normalized across subjects. A black line separates cycles of less than and greater than 5 minutes.
Across all subjects, 80% of edit-debug cycles were less than 5 minutes in length.

9696969696969696
9393939393939393
2828282828282828
9898989898989898
7474747474747474
7373737373737373
5656565656565656
7272727272727272
7878787878787878
7676767676767676
5252525252525252

128128128128128128128128
3939393939393939
7272727272727272
8181818181818181
3333333333333333

246246246246246246246246
6565656565656565
4343434343434343
9797979797979797

0% 20% 40% 60% 80% 100%

< 10 sec 10 30 sec 30 60 sec 1 2 min 2 5 min 5 10 min 10 30 min > 30 min

 24

code because “[he] ended up throwing so much away”. Instead, successful opportunistic

programmers document their process. For example, one designer keeps a project notebook

for each exhibit. In this notebook, he documents important knowledge gained through the

design process, such as the strengths and weaknesses of a particular tool, or why a user

interface was not successful. Reuse of code written opportunistically is rare. Another exhibit

designer reported that the only time he reuses code is when “[he] wrote it for the last project

[he] worked on… otherwise it is just too much trouble.” However, both designers reported

that with the right kind of documentation, process reuse is both common and invaluable.

Second, the perceived impermanence of code written opportunistically leads to

what we call code satisficing. Programmers will often implement functionality in a sub-

optimal way during opportunistic development in order to maintain flow [21]. For example,

a participant in our lab was attempting to implement a fixed-length queue using an array in

order to store chat history. She was a novice PHP programmer, but a very experienced

programmer overall. She took a guess at PHP array notation, and guessed wrong. Instead of

looking up the notation, she decided to create ten global variables, one for each element of

the “array”. She commented that “[she knew] there was a better way to do this” but “didn’t

want to be interrupted”. Initially, it appeared she had made the right decision, as she was able

to test the history functionality only seconds later. However, this led to problems down the

road. She made a typographical error when implementing the dequeue operation that took

her over ten minutes to debug and clearly broke her flow. As this example illustrates, code

satisficing can be both good and bad. Successful opportunistic programmers are good at

weighing the trade-offs between implementing something “right” and implementing

something “quickly”.

 25

3.3.5 FACE UNIQUE DEBUGGING CHALLENGES

Opportunistic programming leads to unique debugging challenges. As mentioned above,

programmers often glue together many disparate components. One consequence of this is

that development often occurs in multiple languages. (E.g., a typical museum exhibit consists

of a Flash user interface that controls several stepper motors by communicating with an

Arduino microcontroller via TCP/IP code written in Python!) When projects employ a

federation of languages, programmers often cannot make effective use of sophisticated

debugging tools intended for a single language. Instead, they are forced to make state and

control flow changes visible through mechanisms like print statements. During our

laboratory study, we observed that people who were better at opportunistic programming

would do things to make state visible while adding new functionality. For example, they

would insert print statements preemptively “just in case” they had to debug later. Individuals

who were less experienced would have to do this after a bug occurred, which was much more

time consuming. Interestingly, the less experienced programmers spent a significant amount

of time trying to determine if a block of code they had just written was even executing, let

alone whether it was correct!

 26

CHAPTER 4 UNDERSTANDING HOW
PROGRAMMERS USE THE WEB

This chapter presents the results of two studies that investigate how programmers leverage

online resources. In the first study, we asked 20 programmers to rapidly prototype a Web

application in the lab. In the second study, we conducted a quantitative analysis of a month-

long sample of Web query data to better understand if our results generalized to the real-

world. We employed this mixed-methods approach to gather data that is both contextually

rich and authentic [16, 36].

4.1 STUDY 1: EXAMINING WEB USE IN THE LAB

We conducted an exploratory study in our lab to understand how programmers leverage

online resources, especially during opportunistic programming.

4.1.1 METHOD

20 Stanford University students (3 female), all proficient programmers, participated in a 2.5-

hour session. The participants (5 Ph.D., 4 Masters, 11 undergraduate) had an average of 8.3

 27

Self-Rated
Proficiency Tasks Completed

Su
bj

ec
t #

Ex
pe

rie
nc

e
(y

ea
rs

)

H
TM

L

Ja
va

Sc
rip

t

PH
P

A
JA

X

U
se

rn
am

e

Po
st

A
JA

X
U

pd
at

e

Ti
m

es
ta

m
p

H
is

to
ry

1 11 7 4 6 5
2 17 5 4 2 1
3 13 7 5 5 2
4 4 6 4 5 2
5 15 6 7 6 5
6 2 6 5 3 4
7 7 5 4 4 4
8 8 5 2 4 2
9 5 7 2 5 6

10 6 5 3 4 2
11 13 4 5 5 5
12 2 6 3 5 2
13 6 7 4 5 2
14 1 5 3 3 2
15 8 5 2 3 2
16 8 7 7 6 7
17 15 7 2 7 2
18 7 5 4 5 4
19 13 5 5 4 5
20 5 6 3 6 2

Table 4.1: Demographic information on the 20 participants in our lab study. Experience is given in number of
years; self-rated proficiency uses a Likert scale from 1 to 7, with 1 representing “not at all proficient” and 7
representing “extremely proficient”.

 28

years of programming experience; all except three had at least 4 years of experience.

However, the participants had little professional experience: only one spent more than 1 year

as a professional developer.

When recruiting, we specified that participants should have basic knowledge of

PHP, JavaScript, and the AJAX paradigm. However, 13 participants rated themselves as

novices in at least one of the technologies involved. (Further demographic information is

presented in Table 4.1) Participants were compensated with their choice of class research

credit (where applicable) or a $99 Amazon.com gift certificate.

The participants’ task was to prototype a Web chat room application using HTML,

PHP, and JavaScript. They were asked to implement five specific features (listed in Figure

4.1). Four of the features were fairly typical but the fifth (retaining a limited chat history)

was more unusual. We introduced this feature so that participants would have to do some

Chat Room Features:

1. Users should be able to set their username on the chat room page
(application does not need to support account management). [Username]

2. Users should be able to post messages. [Post]

3. The message list should update automatically without a complete page
reload. [AJAX update]

4. Each message should be shown with the username of the poster and a
timestamp. [Timestamp]

5. When users first open a page, they should see the last 10 messages sent in
the chat room, and when the chat room updates, only the last 10
messages should be seen. [History]

Figure 4.1: List of chat room features that lab study participants were asked to implement. The first four
features are fairly typical; the fifth, retaining a limited chat history, is more unique.

 29

programming, even if they implemented other features by downloading an existing chat

room application (3 participants did this). We instructed participants to think of the task as

a hobby project, not as a school or work assignment. Participants were not given any

additional guidance or constraints.

We provided each participant with a working execution environment within

Windows XP (Apache, MySQL, and a PHP interpreter) with a “Hello World” PHP

application already running. They were also provided with several standard code authoring

environments (Emacs, VIM, and Aptana, a full-featured IDE that provides syntax

highlighting and code assistance for PHP, JavaScript and HTML) and allowed to install

their own. Participants were allowed to bring any printed resources they typically used while

Figure 4.2: Screenshot of one participant’s completed chat room. This participant met all of the specifications.

 30

programming and were told that they were allowed to use any resources, including any code

on the Internet and any code they had written in the past that they could access.

Three researchers observed each participant; all took notes. During each session, one

researcher asked open-ended questions such as “why did you choose to visit that Web site?”

or “how are you going to go about tracking down the source of that error?” that encouraged

think-aloud reflection at relevant points (in particular, whenever participants used the Web

as a resource). Researchers compared notes after each session and at the end of the study to

arrive at the qualitative conclusions. Audio and video screen capture were recorded for all

participants and were later coded for the amount of time participants used the Web.

Figure 4.3: Overview of when participants referenced the Web during the laboratory study. Subjects are
sorted by total amount of time spent using the Web. Web use sessions are shown in light blue, and instances
of Web search are shown as dark bars.

14.2

37.8

18.1

7.2
9.2

16.2

24.3

26.8
30.2

38.8

68.8

34.8
30.3

42.8

36.3

9.5

14.2

25.4

15.9

10.2
18

27

8

8
21

13

13

35
17

40

25

11
13

14

27

10

13

22

18

7
11

25

4

6
6

5

21

9
24

30

33

9
10

1

29

6

2

24

17

9

0 15 30 45 60 75 90 105 120 135

su
bje

cts
 (s

or
ted

 by
 to

tal
 w

eb
 us

e)

minutes

tot
al

mi
nu

tes
nu

m.
 us

es
nu

m.
 se

arc
he

s

 31

4.1.2 RESULTS

The majority of participants met most or all of the chat room specifications: All but one met

at least four of the five, and 75% met them all. (Figure 4.2 shows one participant’s finished

chat room, which met all of the specifications.) All participants used the Web extensively

(see Figure 4.3). On average, participants spent 19% of their programming time on the Web

(25.5 of 135 minutes; σ = 15.1 minutes) in 18 distinct sessions (σ = 9.1).

The lengths of Web use sessions resembles a power-law distribution (see Figure

4.4). The shortest half (those less than 47 seconds) compose only 14% of the total time; the

longest 10% compose 41% of the total time. This suggests that individuals are leveraging the

Web to accomplish several different kinds of activities. Web usage also varied considerably

between participants: The most-active Web user spent an order of magnitude more time

online than the least active user.

Figure 4.4: All 360 Web use sessions amongst the 20 participants in our lab study, sorted and plotted by
decreasing length (in seconds). The left vertical bar represents the cutoff separating the 10% longest
sessions, and the right bar the cutoff for 50% of sessions. The dotted line represents a hypothetical uniform
distribution of session lengths.

session (sorted by length)

se
ss

io
n

le
ng

th
 (n

um
. s

ec
on

ds
)

60 120 180 240 300 360

0
20
0

40
0

60
0

80
0

0

 32

4.1.2.1 Goals driving Web use

Why do programmers go to the Web? At the long end of the spectrum, participants spent

tens of minutes learning a new concept (e.g., by reading a tutorial on AJAX-style

programming). On the short end, participants delegated their memory to the Web, spending

tens of seconds to remind themselves of syntactic details of a concept they new well (e.g., by

looking up the structure of a foreach loop). In between these two extremes, participants used

the Web to clarify their existing knowledge (e.g., by viewing the source of an HTML form to

understand the underlying structure). This section presents typical behaviors, anecdotes,

and theoretical explanations for these three styles of online resource usage (see Table 4.2 for

a summary).

4.1.2.2 Just-in-time learning of new skills

Participants routinely stated that they were using the Web to learn about unfamiliar

technologies. These Web sessions typically started with searches used to locate tutorial Web

sites. After selecting a tutorial, participants frequently used its source code as a scaffold for

learning-by-doing.

Searching for tutorials: Participants’ queries usually contained a natural-language

description of a problem they were facing, often augmented with several keywords specifying

technology they planned to use (e.g., “php” or “javascript”). For example, one participant

unfamiliar with the AJAX paradigm performed the query “update web page without

reloading php”. Query refinements were common for this type of Web use, often before the

user clicked on any results. These refinements were usually driven by familiar, or newly

learned, terms seen on the query result page: In the above example, the participant refined

the query to “ajax update php” before clicking on any links.

 33

Selecting a tutorial: Participants typically clicked several query result links, opening

each in a new Web browser tab before evaluating the quality of any of them. After several

pages were opened, participants would judge their quality by rapidly skimming. In particular,

several participants reported using cosmetic features—e.g., prevalence of advertising on the

Web page or whether code on the page was syntax-highlighted—to evaluate the quality of

potential Web sites. When we asked one participant how she decided what Web pages are

trustworthy, she explained, “I don’t want [the Web page] to say ‘free scripts!’, or ‘get your

chat room now!’, or stuff like that. I don’t want that because I think it’s gonna be bad, and

most developers don’t write like that … they don’t use that kind of language.” This assessing

behavior is consistent with information scent theory, in that users decide which Web pages

to explore by evaluating their surface-level features [71].

Using the tutorial: Once a participant found a tutorial that he believed would be

useful, he would often immediately begin experimenting with its code samples (even before

reading the prose). We believe this is because tutorials typically contain a great deal of prose,

Web session goal Learning Clarification Reminder

Reason for using Web Just-in-time learning of
unfamiliar concepts

Connect high-level
knowledge to

implementation details

Substitute for
memorization

(e.g., language, syntax, or
function usage lookup)

Web session length Tens of minutes About 1 minute < 1 minute
Starts with web search? Almost always Often Sometimes

Search terms Natural language related to
high-level task

Mix of natural language
and code, cross-language

analogies

Mostly code (e.g., function
names, language

keywords)
Example search “ajax tutorial” “javascript thread” “mysql_fetch_array”
Num. result clicks Usually several Fewer Usually zero or one
Num. query refinements Usually several Fewer Usually zero

Types of Web pages visited Tutorials, how-to articles API documentation, blog
posts, articles

API documentation, result
snippets on search page

Amount of code copied
from Web

Dozens of lines (e.g., from
tutorial snippets) Several lines Varies

Immediately test
copied code? Yes Not usually, often trust

snippets Varies

Table 4.2: Summary of characteristics of three points on the spectrum of Web use goals.

 34

which is time-consuming to read and understand. Subject 10 said, “I think it’s less expensive

for me to just take the first [code I find] and see how helpful it is at … a very high level … as

opposed to just reading all these descriptions and text.”

Participants often began adapting code before completely understanding how it

worked. One participant explained, “there’s some stuff in [this code] that I don’t really know

what it’s doing, but I’ll just try it and see what happens.” He copied four lines into his project,

immediately removed two of the four, changed variable names and values, and tested. The

entire interaction took 90 seconds. This learning-by-doing approach has one of two

outcomes: It either leads to deeper understanding, mitigating the need to read the tutorial’s

prose, or it isolates challenging areas of the code, guiding a more focused reading of the

tutorial’s prose.

For programmers, what is the cognitive benefit of experimentation over reading?

Results from cognitive modeling may shed light on this. Cox and Young developed two

ACT-R models to simulate a human learning the interface for a central heating unit [20].

The first model was given “‘how-to-do-the-task’ instructions” and was able to carry out only

those specific tasks from start to finish. The second model was given “‘how-the-device-works’

instructions,” (essentially a better mapping of desired states of the device to actions

performed) and afterwards could thus complete a task from any starting point. When

tutorials are used as an aid in the middle of the development process, the programmer is

typically only interested in a small portion of the tutorial. Programmers therefore commonly

pick up the tutorial’s task “in the middle”. We suggest that when participants experiment

with code, it is precisely to learn these action/state mappings.

 35

Approximately 1/3 of the code in participants’ projects was physically copied and

pasted from the Web. This code came from many sources: while a participant may have

copied a hundred lines of code altogether, he did so ten lines at a time. This approach of

programming by example modification is consistent with Yeh et al.’s study of students

learning to use a Java toolkit [86].

4.1.2.3 Clarification of existing knowledge

There were many cases where participants had a high-level understanding of how to

implement functionality, but did not know how to implement it in the specific programming

language. They needed a piece of clarifying information to help map their schema to the

particular situation. The scenario presented at the beginning of Chapter 1 is an example of

this behavior: The participant had a general understanding of HTML forms, but did not

know all of the required syntax. These clarifying activities are distinct from learning activities

because participants can easily recognize and adapt the necessary code once they find it.

Because of this, clarifying uses of the Web are significantly shorter than learning uses.

Searching with synonyms: Participants often used Web search when they were

unsure of exact terms. We observed that search works well for this task because synonyms of

the correct programming terms often appear in online forums and blogs. For example, one

participant used a JavaScript library that he had used in the past but “not very often,” to

implement the AJAX portion of the task. He knew that AJAX worked by making requests to

other pages, but he forgot the exact mechanism for accomplishing this in his chosen library

(named Prototype). He searched for “prototype request”. The researchers asked, “Is ‘request’

 36

the thing that you know you’re looking for, the actual method call?” He replied, “I don’t

know. I just know that it’s probably similar to that.”

Clarification queries contained more programming-language-specific terms than

learning ones. Often, however, these terms were not from the correct programming language!

Participants often made what we call language analogies: For example, one participant said

“Perl has [a function to format dates as strings], so PHP must as well”. Similarly, several

participants searched for “javascript thread”. While JavaScript does not explicitly contain

threads, it supports similar functionality through interval timers and callbacks. All

participants who performed this search quickly arrived at an online forum or blog posting

that pointed them to the correct function for setting periodic timers: setInterval.

Testing copied code (or not): When participants copied code from the Web during

clarification uses, it was often not immediately tested. Participants typically trusted code

found on the Web, and indeed, it was typically correct. However, they would often make

minor mistakes when adapting the code to their needs (e.g., forgetting to change all instances

of a local variable name). Because they believed the code correct, they would then work on

other functionality before testing. When they finally tested and encountered bugs, they

would often erroneously assume that the error was in recently-written code, making such

bugs more difficult to track down.

Using the Web to debug: Participants also used the Web for clarification during

debugging. Often, when a participant encountered a cryptic error message, he would

immediately search for that exact error on the Web. For example, one participant received an

error that read, “XML Filtering Predicate Operator Called on Incompatible Functions.” He

mumbled, “What does that mean?” then followed the error alert to a line that contained

 37

code previously copied from the Web. The code did not help him understand the meaning of

the error, so he searched for the full text of the error. The first site he visited was a message

board with a line saying “This is what you have:” followed by the exact code in question and

another line saying “This is what you should have:” followed by a corrected line of code.

With this information, the participant returned to his code and successfully fixed the bug

without ever fully understanding the cause.

4.1.2.4 Reminders about forgotten details

Even when participants were familiar with a concept, they often did not remember low-level

syntactic details. For example, one participant was adept at writing SQL queries, but unsure

of the correct placement of a limit clause. Immediately after typing “ORDER BY respTime”,

he went online and searched for “mysql order by”. He clicked on the second link, scrolled

halfway down the page, and read a few lines. Within ten seconds he had switched back to his

code and added “LIMIT 10” to the end of his query. In short, when participants used the

Web for reminding about details, they knew exactly what information they were looking for,

and often knew exactly on which page they intended to find it (e.g., official API

documentation).

Searching or browsing for reminders: When participants used the Web for

learning and clarification, they almost always began by performing a Web search and then

proceeded to view one or more results. In the case of reminders, sometimes participants

would perform a search and view only the search result snippets without viewing any of the

results pages. For example, when one participant forgot the exact name of the PHP function

used to access the result of a database query. A Web search for “php fetch array” allowed him

 38

to quickly retrieve this information (“mysql_fetch_array”) the exact name of the function

simply by browsing the snippets in the results page (See Figure 4.5). Other times,

participants would view a page without searching at all. (The Gantt chart in Figure 4.3

contains many Web sessions that do not begin with a dark bar indicating a Web search.) This

is because participants often kept select Web sites (such as official language documentation)

open in browser tabs to use for reminders when necessary.

The Web as an external memory aid: Several participants reported using the Web

as an alternative to memorizing routinely-used snippets of code. One participant browsed to

a page within PHP’s official documentation that contained six lines of code necessary to

Figure 4.5: Example of how participants used Web search to remind themselves of forgotten low-level syntax.
Here, the programmer forgot the exact name of the function used to access the result of a database query.
Searching for “php fetch array” allowed him to quickly retrieve the exact name (highlighted) without visiting
any additional Web pages.

 39

connect and disconnect from a MySQL database. After he copied this code, a researcher

asked him if he had copied it before. He responded, “[yes,] hundreds of times”, and went on

to say that he never bothered to learn it because he “knew it would always be there.” We

believe that in this way, programmers can effectively distribute their cognition [45],

allowing them to devote more mental energy to higher-level tasks.

4.2 STUDY 2: WEB SEARCH LOG ANALYSIS

Do programmer’s Web query styles in the real world robustly vary with their goal, or are the

results presented above an artifact of the particular lab setting? To investigate this, we

Figure 4.6: Web query result interface for Adobe’s Community Help search portal. This portal is implemented
using a Google Custom Search Engine, and displays results in a format nearly identical to general-purpose
search engines such as Google.

 40

analyzed Web query logs from 24,293 programmers making 101,289 queries about the

Adobe Flex Web application development framework in July 2008. These queries came from

the Community Search portal [5] on Adobe’s Developer Network Web site [6]. This portal is

implemented using a Google Custom Search Engine [7], and indexes documentation,

articles, blogs, and forums by Adobe and vetted third-party sources. It displays search results

in a format nearly identical to general-purpose search engines such as Google (See Figure

4.6).

To cross-check the lab study against this real-world data set, we began our analysis by

evaluating four hypotheses derived from those findings:

H1: Learning sessions begin with natural language queries more often than
reminding sessions.

H2: Users more frequently refine queries without first viewing results when learning
than when reminding.

H3: Programmers are more likely to visit official API documentation in reminding
sessions.

H4: The majority of reminding sessions start with code-only queries. Additionally,
code-only queries are least likely to be refined, and contain the fewest number of
result clicks.

4.2.1 METHOD

We analyzed the data in three steps. First, we used IP addresses (24,293 total unique IPs)

and timestamps to group queries (101,289 total) into sessions (69,955 total). A session was

defined as a sequence of query and result-click events from the same IP address with no gaps

longer than six minutes. (This definition is common in query log analysis, e.g., [78].)

Second, we selected 300 of these sessions and analyzed them manually. We found it

valuable to examine all of a user’s queries because doing so provided more contextual

 41

information. We used unique IP addresses as a proxy for users, and randomly selected from

among users with at least 10 sessions. 996 met this criteria; we selected 19. This IP-user

mapping is close but not exact: a user may have searched from multiple IP addresses, and

some IP addresses may map to multiple users. It seems unlikely, though, that conflating IPs

and users would affect our analysis.

These sessions were coded as one of learning, reminding, unsure, or misgrouped.

(Because the query log data is voluminous but lacks contextual information, we did not use

the clarifying midpoint in this analysis.) We coded a session as learning or reminding based on

the amount of knowledge we believed the user had on the topic he was searching for, and as

unsure if we could not tell. To judge the user’s knowledge, we used several heuristics:

whether the query terms were specific or general (e.g., “radio button selection change” is a

specific search indicative of reminding), contents of pages visited (e.g., a tutorial indicates

learning), and whether the user appeared to be an expert (determined by looking at the user’s

entire search history—someone who occasionally searches for advanced features is likely to

be an expert.) We coded a session as misgrouped if it appeared to have multiple unrelated

queries (potentially caused by a user performing unrelated searches in rapid succession, or by

pollution from multiple users with the same IP address).

Finally, we computed three properties about each search session:

1. Query type—whether the query contained only code (terms specific to the
Flex framework, such as class and function names), only natural language, or
both.

2. Query refinement method—between consecutive queries, whether search
terms were generalized, specialized, otherwise reformulated, or changed
completely.

 42

3. Types of Web pages visited—each result click was classified as one of four page
types: Adobe APIs, Adobe tutorials, tutorials/articles (by third-party authors),
and forums.

4.2.1.1 Determining query type

We first split each query string into individual tokens using whitespace. Then we ran each

token through three classifiers to determine if it was code (i.e., Flex-specific keywords and

class/function names from the standard library). The first classifier checked if the token was

a (case-insensitive) match for any classes in the Flex framework. The second checked if the

token contained camelCase (a capital letter in the middle of the word), which was valuable

because all member functions and variables in the Flex framework use camelCase. The third

checked if the token contained a dot, colon, or ended with an open and closed parenthesis, all

indicative of code. If none of these classifiers matched, we classified the token as a natural-

language word.

4.2.1.2 Determining query refinement method

We classified refinements into five types, roughly following the taxonomy of Lau and Horvitz

[53]. A generalize refinement had a new search string with one of the following properties: it

was a substring of the original, it contained a proper subset of the tokens in the original, or it

split a single token into multiple tokens and left the rest unchanged. A specialize refinement

had a new search string with one of the following properties: it was a superstring of the

original, it added tokens to the original, or it combined several tokens from the original

together into one and left the rest unchanged. A reformulate refinement had a new search

string that contained some tokens in common with the original but was neither a

generalization nor specialization. A new query had no tokens in common with the original.

 43

Spelling refinements were any queries where spelling errors were corrected, as defined by

Levenshtein distances between corresponding tokens all being less than 3.

4.2.1.3 Determining Web page type

We built regular expressions that matched sets of URLs that were all the same type. A few

Web sites, such as the official Adobe Flex documentation and official tutorial pages, contain

the majority of all visits (and can be described using just a few regular expressions). We

sorted all 19,155 result click URLs by number of visits and classified the most frequently-

visited URLs first. With only 38 regular expressions, we were able to classify pages that

accounted for 80% of all visits (10,909 pages). We did not hand-classify the rest of the pages

because the cost of additional manual effort outweighed the potential marginal benefits.

Result clicks for the remaining 8246 pages (20% of visits) were labeled as unclassified.

4.2.2 RESULTS

Out of 300 sessions, 20 appeared misgrouped, and we were unsure of the goal for 28. Of the

remaining 252 sessions, 56 (22%) had learning traits and 196 (78%) reminding traits. An

example of a session with reminding traits had a single query for “function as parameter” and

a single result click on the first result, a language specification page. An example of a session

with learning traits began with the query “preloader”, which was refined to “preloader in flex”

and then “creating preloader in flex”, followed by a result click on a tutorial.

 44

 Session type
Type of first query Learning Reminding All hand-coded
code only 0.21 0.56 0.48
nat. lang. & code 0.29 0.10 0.14
nat. lang. only 0.50* 0.34 0.38
Total 1.00 1.00 1.00

Table 4.3: For hand-coded sessions of each type, proportion of first queries of each type (252 total sessions).
Statistically significant differences between columns are shown in bold, * entry means only significant at p < 0.05.

Session type Result click
Web page type Learning Reminding All hand-coded
Adobe APIs 0.10 0.31 0.23
Adobe tutorials 0.35 0.42 0.40
tutorials/articles 0.31 0.10 0.17
forums 0.06 0.04 0.05
unclassified 0.18 0.13 0.15
Total 1.00 1.00 1.00

Table 4.4: For queries in hand-coded sessions of each type, proportion of result clicks to Web sites of each
type (401 total queries). Statistically significant differences between columns are shown in bold.

Refinement type
generalize new reformulate specialize spelling all

0.44 0.61 0.51 0.39 0.14 0.48

Table 4.5: For each refinement type, proportion of refinements of that type where programmers clicked on
any links prior to the refinement (31,334 total refinements).

query type
Result click
Web page type code

nat. lang.
& code nat. lang. All clicks

Adobe APIs 0.38 0.16 0.10 0.23
Adobe tutorials 0.31 0.33 0.39 0.34
tutorials/articles 0.15 0.22 0.19 0.18
forums 0.03 0.07 0.06 0.05
unclassified 0.13 0.22 0.27 0.20
Total 1.00 1.00 1.00 1.00

Table 4.6: For queries of each type, proportion of result clicks leading programmer to Web pages of each type
(107,343 total queries). Statistically significant differences between columns are shown in bold.

 45

We used the Mann-Whitney U test for determining statistical significance of

differences in means and the chi-square test for determining differences in frequencies

(proportions). Unless otherwise noted, all differences are statistically significant at p <

0.001.

H1: The first query was exclusively natural language in half of learning sessions,

versus one third in reminding sessions (see Table 4.3).

H2: Learning and reminding sessions do not have a significant difference in the

proportion of queries with refinements before first viewing results.

H3: Programmers were more likely to visit official API documentation in reminding

sessions than in learning sessions (31% versus 10%, see Table 4.4).

H4: Code-only queries accounted for 56% of all reminding queries (Table 4.3).

Among all (including those not hand-coded) sessions, those beginning with code-only

queries were refined less (μ = 0.34) than those starting with natural language and code

(μ = 0.60) and natural language only (μ = 0.51). It appears that when programmers perform

code-only queries, they know what they are looking for, and typically find it on the first

search.

After evaluating these hypotheses, we performed further quantitative analysis of the

query logs. In this analysis, we focused on how queries were refined and the factors that

correlated with types of pages visited.

 46

4.2.2.1 Programmers rarely refine queries, but are good at it

In this data set, users performed an average of 1.45 queries per session (the distribution of

session lengths is shown in Figure 4.7). This is notably less than other reports, e.g., 2.02 [78].

There are a number of possible explanations for this: improvements in search algorithms,

that programming as a domain is well-suited to search, that participants were skilled, or that

users abandon specialized search tools like Community Help more quickly than they do

general purpose search engines.

Across all sessions and refinement types, 66% of queries after refinements have result

clicks, which is significantly higher than the percentage of queries before refinements (48%)

that have clicks. This contrast suggests that refining queries generally produces better results.

When programmers refined a query to make it more specialized, they generally did so

without first clicking through to a result (see Table 4.5). Presumably, this is because they

Figure 4.7: How query types changed as queries were refined. In both graphs, each bar sums all ith queries
over all sessions that contained an ith query (e.g., a session with three queries contributed to the sums in the
first three bars). The graph on the left is a standard histogram; the graph on the right presents the same data,
but with each bar’s height normalized to 100 to show changes in proportions as query refinements occurred.

1 2 3 4 5 6 7 8

query number within session

nu
m

. q
ue

rie
s

of
 e

ac
h

se
ar

ch
 te

rm
 ty

pe

0
20
00
0

40
00
0

60
00
0

code only

words and code

words only

1 2 3 4 5 6 7 8

query number within session

%
 q

ue
rie

s
of

 e
ac

h
se

ar
ch

 te
rm

 ty
pe

0
20

40
60

80
10
0

 47

assessed the result snippets and found them unsatisfactory. Programmers may also see little

risk in “losing” a good result when specializing—if it was a good result for the initial query, it

ought to be a good result for the more specialized one. This hypothesis is reinforced by the

relatively high click rate before performing a completely new query (presumably on the same

topic)—good results may be lost by completely changing the query, so programmers click

any potentially valuable links first. Finally, almost no one clicks before making a spelling

refinement, which makes sense because people mostly catch typos right away.

Users began with code-only searches 48% of the time and natural language searches

38% of the time (see Figure 4.7). Only 14% of the time was the first query mixed. The

percent of mixed queries steadily increased to 42% by the eighth refinement, but the percent

of queries containing only natural language stayed roughly constant throughout.

4.2.2.2 Query type predicts types of pages visited

There is quantitative support for the intuition that query type is indicative of goal (see Table

4.6). Code-only searches, which one would expect to be largely reminding queries, are most

likely to bring programmers to official Adobe API pages (38% versus 23% overall) and least

likely to bring programmers to all other types of pages. Natural-language-only queries, which

one would expect to be largely learning queries, are most likely to bring programmers to

official Adobe tutorials (39% versus 34% overall).

4.3 LIMITATIONS OF OUR FINDINGS

One limitation of studying student programmers in the lab is that their behavior and

experience may differ from the broader population of programmers. Our query log analysis,

prior work (e.g., [44, 79]), and informal observation of online forums suggest that

 48

programmers of all skill levels are indeed turning to the Web for help. An important area for

future work will be to better understand how the behaviors of these populations differ.

A limitation of the query log study is that it does not distinguish queries that were

“opportunistic” from those that were not. It remains an open question whether there is a

causal relationship between programming style and Web usage style.

Finally, our studies do not consider any resources other than the Web, such as

printed media, or one’s colleagues. (While we notified the lab participants that they could

bring printed materials, none did.) This dissertation looks exclusively at Web usage; other

researchers have similarly examined other information resources individually (e.g., Chong et

al. examined collaboration between programmers during solo and pair programming [17]).

Future work is needed to compare the trade-offs of these different information resources.

4.4 FIVE KEY INSIGHTS AND IMPLICATIONS FOR TOOLS

In this section, we present five insights distilled from our findings. For each insight, we

suggest implications for the design of tools that better support programmers’ use of the Web.

In the chapters that follow, we explore and evaluate these implications.

Programmers deliberately choose not to remember complicated syntax. Instead,

they use the Web as external memory that can be accessed as needed. This suggests that Web

search should be integrated into the code editor in much the same way as identifier

completion (e.g., Microsoft’s IntelliSense and Eclipse’s Code Assist). Another possible

approach is to build upon ideas like keyword programming [57] to create authoring

environments that allow the programmer to type “sloppy” commands which are

automatically transformed into syntactically correct code using Web search.

 49

Web search often serves as a “translator” when programmers don’t know the exact

terminology or syntax. Using the Web, programmers can adapt existing knowledge by making

analogies with programming languages, libraries and frameworks that they know well. The

Web further allows programmers to make sense of cryptic errors and debugging messages.

Future tools could proactively search the Web for the errors that occur during execution,

compare code from search results to the user’s own code, and automatically locate possible

sources of errors.

Programmers are good at refining their queries, but need to do it rarely. Query

refinement is most necessary when users are trying to adapt their existing knowledge to new

programming languages, frameworks, or situations. This underscores the value of keeping

users in the loop when building tools that search the Web automatically or semi-

automatically. In other cases, however, query refinements could be avoided by building tools

that automatically augment programmers’ queries with contextual information, such as the

programming language, frameworks or libraries in the project, or the types of variables in

scope.

Programmers use Web tutorials for just-in-time learning, gaining high-level

conceptual knowledge when they need it. Tools may valuably encourage this practice by

tightly coupling tutorial browsing and code authoring. One system that explores this

direction is d.mix, which allows users to “sample” a Web site’s interface elements, yielding the

API calls necessary to create them [39]. This code can then be modified inside a hosted

sandbox.

Programmers often delay testing code copied from the Web, especially when

copying routine functionality. As a result, bugs introduced when adapting copied code are

 50

often difficult to find. Tools could assist in the code adaptation process by, for example,

highlighting all variable names and literals in any pasted code. Tools could also clearly

demarcate regions of code that were copied from the Web and provide links back to the

original source.

 51

CHAPTER 5 BLUEPRINT:
INTEGRATING WEB SEARCH INTO THE
DEVELOPMENT ENVIRONMENT

This chapter investigates whether a task-specific search engine integrated into existing

programming environments can significantly reduce the cost of searching for relevant

information, and thus change how programmers use search. Small performance

improvements can cause categorical behavior changes that far exceed the benefits of

decreased task completion time [35]. For example, slight changes in the efficiency of an

interface for an 8-tile puzzle game (e.g., direct manipulation versus keyboard commands for

moving a tile) have been show to influence how individuals plan higher-level tasks [68].

Similarly, individuals are 1.5 times more likely to prefer a search engine with a 250

millisecond delay in returning results over one with a 2 second delay (when they are unaware

that the difference between the two search engines is this delay) [14]. This effect exists even

at seemingly imperceptible levels: introducing a 100 millisecond delay in presenting Web

 52

s e a r c h r e s u l t s c a u s e s a 0 . 2 % d e c r e a s e i n d a i l y s e a r c h e s p e r u s e r [1 5] , w h i c h r e p r e s e n t s a

s i g n i f i c a n t l o s s o f r e v e n u e f o r m a j o r c o m m e r c i a l s e a r c h e n g i n e s .

W e b e l i e v e t h a t r e d u c i n g s e a r c h c o s t t h r o u g h t o o l i n t e g r a t i o n m a y i n c r e a s e a n d

c h a n g e h o w p r o g r a m m e r s f i n d a n d u s e e x a m p l e s . T h e s e i d e a s a r e m a n i f e s t i n Blueprint, a

W e b s e a r c h i n t e r f a c e i n t e g r a t e d i n t o t h e A d o b e F l e x B u i l d e r d e v e l o p m e n t e n v i r o n m e n t t h a t

h e l p s u s e r s l o c a t e e x a m p l e c o d e .

T w o i n s i g h t s d r o v e B l u e p r i n t ’ s d e s i g n (s e e Figure 5.1 a n d Figure 5.2) . F i r s t ,

embedding search into the development environment a l l o w s t h e s e a r c h e n g i n e t o l e v e r a g e t h e

u s e r s ’ c o n t e x t (e.g., p r o g r a m m i n g l a n g u a g e s a n d f r a m e w o r k v e r s i o n s i n u s e) . T h i s l o w e r s t h e

Figure 5.1: The Blueprint plug-in for the Adobe Flex Builder development environment helps programmers
locate example code. A hotkey places a search box (A) at the programmer’s cursor position. Search results (B)
are example-centric; each result contains a brief textual description (C), the example code (D), and, when
possible, a running example (E). The user’s search terms are highlighted (F), facilitating rapid scanning of the
result set. Blueprint allows users to rate examples (G).

 53

c o s t o f c o n s t r u c t i n g a g o o d q u e r y , w h i c h i m p r o v e s r e s u l t q u a l i t y . S e c o n d , extracting code

examples from Web pages and composing them in a consistent, code-centric search results view

r e d u c e s t h e n e e d t o c l i c k t h r o u g h t o W e b p a g e s t o f i n d e x a m p l e c o d e . T h i s a l l o w s u s e r s t o

e v a l u a t e r e s u l t s m u c h m o r e r a p i d l y t h a n w i t h t r a d i t i o n a l W e b s e a r c h i n t e r f a c e s , r e d u c i n g t h e

c o s t o f s e l e c t i n g a g o o d r e s u l t .

W e f i r s t e v a l u a t e d B l u e p r i n t t h r o u g h a c o m p a r a t i v e l a b o r a t o r y s t u d y w i t h 2 0

p a r t i c i p a n t s . I n t h e l a b , p a r t i c i p a n t s i n t h e B l u e p r i n t c o n d i t i o n f o u n d a nd a d a p t e d e x a m p l e

c o d e s i g n i f i c a n t l y f a s t e r t h a n t h o s e i n t h e t r a d i t i o n a l W e b s e a r c h c o n d i t i o n . B l u e p r i n t

p a r t i c i p a n t s a l s o w r o t e s i g n i f i c a n t l y b e t t e r c o d e , p e r h a p s b e c a u s e t h e y c o u l d l o o k a t m a n y

m o r e e x a m p l e s a n d c h o o s e a b e t t e r s t a r t i n g p o i n t . T o b e t t e r u nd e r s t a nd h o w B l u e p r i nt

w o u l d a f f e c t t h e w o r k f l o w o f r e a l - w o r l d p r o g r a m m e r s , w e d e p l o y e d B l u e p r i n t o n t h e A d o b e

L a b s W e b s i t e , a n d s t u d i e d h o w i t w a s u s e d b y t h o u s a n d s o f d e v e l o p e r s o v e r o n e y e a r . W e

r e p o r t o n t h i s d e p l o y m e n t i n C h a p t e r 6 .

Figure 5.2: Example-centric programming with Blueprint. The user presses a hotkey to initiate a search; a
search box appears at the cursor location (1). Searches are performed interactively as the user types; example
code and running examples (when present) are shown immediately (2). The user browses examples with
the keyboard or mouse, and presses Enter to paste an example into her project (3). Blueprint automatically
adds a comment containing metadata that links the example to its source (4).

 54

The remainder of this chapter proceeds as follows. We first present a scenario that

describes the use of Blueprint and presents its interface. We then describe the

implementation of Blueprint. Next, we detail the laboratory evaluation of Blueprint. We

conclude by positioning Blueprint in a design space of tools that support example-centric

development.

5.1 SCENARIO: DEVELOPING WITH BLUEPRINT

Blueprint is designed to help programmers with directed search tasks and allow them to

easily remind themselves of forgotten details, and clarify existing knowledge. Let’s follow

Jenny as she creates a Web application for visualizing power consumption.

First, Jenny needs to retrieve power-usage data from a Web service. Although Jenny has

written similar code previously, she can’t remember the exact code she needs. She does

remember that one of the main classes involved began with “URL”. So, she types “URL” into

her code and uses auto-complete to remember the “URLLoader” class. Although, she now

knows the class name, Jenny still doesn’t know how to use it (Figure 5.2, step 1). With another

hotkey, Jenny brings up the Blueprint search interface, which automatically starts searching for

URLLoader (step 2). Blueprint augments Jenny’s query with the language and framework

version she is using, and returns appropriate examples that show how to use a URLLoader. She

scans through the first few examples and sees one that has all the pieces she needs (step 3). She

selects the lines she wants to copy, presses Enter, and the code is pasted in her project.

Blueprint augments the code with a machine- and human-readable comment that records the

URL of the source and the date of copy (step 4). When Jenny opens this source file in the

future, Blueprint will check this URL for changes to the source example (e.g., with a bug fix),

 55

and will notify her if an update is available. Jenny runs the code in Flex’s debugger to inspect the

XML data.

Next, Jenny wants to explore different charting components to display power usage.

She invokes Blueprint a second time and searches for “charting”. Jenny docks the Blueprint

result window as a panel in her development environment so she can browse the results in a

large, persistent view. When source pages provide a running example, Blueprint presents this

example next to the source code. Eventually Jenny picks a line chart, copies the example code

from the Blueprint panel into her project, and modifies it to bind the chart to the XML data.

Finally, Jenny wants to change the color of the lines on the chart. She’s fairly confident

that she knows how to do this, and types the necessary code by hand. To make sure she didn’t

miss any necessary steps, she presses a hotkey to initiate a Blueprint search from one of the lines of

code she just wrote. Blueprint automatically uses the contents of the current line as the initial

query. Because terms in this line of code are common to many examples that customize charts,

she quickly finds an example that matches what she is trying to do. She confirms her code is

correct, and begins testing the application. After only a few minutes her prototype is complete.

5.2 IMPLEMENTATION

Blueprint comprises a client plug-in, which provides the user interface for searching and

browsing results, and the Blueprint server, which executes searches for example code. Figure

5.3 provides a visual system description.

 56

5.2.1 CLIENT-SIDE PLUG-IN

T h e B l u e p r i n t c l i e n t i s a p l u g - i n f o r A d o b e F l e x B u i l d e r . F l e x B u i l d e r , i n t u r n , i s a p l u g - i n f o r

t h e E c l i p s e D e v e l o p m e n t E n v i r o n m e n t . T h e B l u e p r i n t c l i e n t p r o v i d e s t h r e e m a i n p i e c e s o f

f u n c t i o n a l i t y . F i r s t , i t p r o v i d e s a u s e r i n t e r f a c e f o r i n i t i a t i n g q u e r i e s a n d d i s p l a y i n g r e s u l t s .

S e c o nd , i t s e nd s c o nt e x t u a l i nf o r m a t i o n (e.g., p r o g r a m m i n g l a n g u a g e a n d f r a m e w o r k

v e r s i o n) w i t h e a c h u s e r q u e r y t o t h e s e r v e r . T h i r d , i t n o t i f i e s t h e u s e r w h e n t h e W e b o r i g i n o f

e x a m p l e s t h e y a d a p t e d h a s u p d a t e d (e.g., w h e n a b u g i s f i x e d) . A l l c o m m u n i c a t i o n b e t w e e n

t h e c l i e n t a n d s e r v e r o c c u r s o v e r H T T P u s i n g t h e J S O N d a t a f o r m a t .

B l u e p r i n t ’ s q u e r y a n d s e a r c h r e s u l t s i n t e r f a c e i s i m p l e m e n t e d u s i n g H T M L a n d

J a v a S c r i p t t h a t a r e r e n d e r e d b y t h e b r o w s e r w i d g e t p r o v i d e d i n E c l i p s e ’ s U I t o o l k i t . S e a r c h

r e s u l t s a r e r e n d e r e d s e q u e n t i a l l y i n a l i s t b e l o w t h e q u e r y b o x (Figure 5.1, p a r t a) . E a c h

s e a r c h r e s u l t i n c l u d e s t h e s o u r c e W e b p a g e t i t l e (b) , a h y p e r l i n k t o t h e s o u r c e W e b p a g e ,

E n g l i s h d e s c r i p t i o n o f t h e e x a m p l e (c) , t h e c o d e e x a m p l e (d) , a n d , i f a v a i l a b l e , a r u n n i n g

e x a m p l e (e) s h o w i n g t h e f u n c t i o n a l i t y o f t h e c o d e . A l l e x a m p l e s i n c l u d e s y n t a x h i g h l i g h t i n g

(p r o d u c e d b y t h e P y g m e n t s [4] l i b r a r y) , a n d u s e r s ’ s e a r c h t e r m s a r e a l s o h i g h l i g h t e d

t h r o u g h o u t t h e c o d e (f) . U s e r s c a n n a v i g a t e t h r o u g h e x a m p l e s u s i n g t h e T a b k e y a n d

Figure 5.3: Architecture of the Blueprint system. The process of servicing a user’s query is shown on the left;
the background task of parsing Web pages to extract examples is shown on the right.

 57

copy/paste selections by pressing enter. Users can rate examples (g) and dock the Blueprint

floating window as an Eclipse panel. Blueprint also allows users to follow hyperlinks to view

search results in context, and maintains a browsing and search history.

When users paste example code into a project, Blueprint inserts a Javadoc-like

comment at the beginning. This comment tags the example code with its URL source, the

insertion date and time, and the search terms used in the initial query. This comment aids the

user in revisiting the source example at a later time if necessary.

5.2.2 BLUEPRINT SERVER

The Blueprint server executes queries for example code and returns examples to the client.

To maximize speed, breadth, and ranking quality, the server leverages the Adobe Community

Help search APIs, a Google Custom Search engine. This search engine indexes Adobe

product-specific content from across the Web. When the Blueprint server receives a query, it

first augments the query with the user’s context (e.g., programming language and framework

version), which is sent along with the query by the client. Then the server sends the new

augmented query to the search engine, which returns a set of URLs. Since Blueprint users are

interested in code examples and not Web pages, the server retrieves the Web pages returned by

the search engine and processes them to extract source code examples.

Since processing each page requires on average 10 seconds (8 seconds to retrieve the

page, 2 seconds to extract examples), we preprocess pages and cache extracted examples.

When the search engine returns URLs that are not in the Blueprint cache, the URLs are

added to the cache by a background process. (Note that the parsing process is easily

parallelized at a per-Web-page level. We have found that retrieving and parsing 100 pages in

 58

parallel works well on our infrastructure.) Code examples from those URLs are returned in

future queries.

Before deploying Blueprint, we pre-populated the cache with approximately 50,000

URLs obtained from search engine query logs. To keep the cache current, Blueprint crawls

the URLs in the cache as a background process. Since pages containing examples are

relatively static, the Blueprint prototype re-crawls them weekly. As of November 2010, after

1.5 years of use, the Blueprint cache includes 208,916 examples from 84,403 unique Web

pages.

Leveraging an existing commercial search engine to produce a candidate result set has

a number of advantages over building a new search engine (e.g., [44, 79]). First, it is

substantially more resource-efficient to implement, as keeping a document collection up to

date is expensive. Second, generating high-quality search results from natural-language queries

is a hard problem and a highly-optimized commercial search engine is likely to produce better

results than a prototype search engine with a restricted domain. Finally, a general-purpose

search engine surfaces examples from tutorials, blogs, and API pages. Examples found on such

pages are more likely to be instructive than examples extracted from large source code

repositories.

5.2.3 EXTRACTING EXAMPLE CODE AND DESCRIPTIONS

To extract source code from Web pages, Blueprint segments the page and classifies each

segment as source code or other type of content. First, Blueprint uses the BeautifulSoup

library [73] to transform HTML into proper XHTML, and then it divides the resulting

hierarchical XHTML document into independent segments by examining block-level

 59

elements. Blueprint uses 31 tags to define blocks; the most common are: P, DIV, PRE, and

heading tags. It also extracts SCRIPT and OBJECT blocks as block-level elements, because

running examples that show executing example code are usually contained within these tags.

To find block-level elements, Blueprint performs a depth-first traversal of the document.

When it reaches a leaf element, it backtracks to the nearest block-level ancestor and creates a

segment. If the root of the tree is reached before finding a block-level element, the element

immediately below the root is extracted as a segment. This algorithm keeps segments

ordered exactly as they were in the original file. Finally, to more easily and reliably determine

whether a segment contains code, Blueprint converts each segment to formatted plain text

using w3m, a text-based Web browser. This conversion allows for classification of code based

on its textual appearance to a user on a Web page and not based on its HTML structure.

Blueprint stores the HTML and plain text versions of all segments in a database. On

average, a Web page in our dataset contains 161 segments. However, 69% of these are less

than 50 characters long (these are primarily created by navigational elements). Although

this algorithm leads to a large number of non-source code segments, it correctly parses blocks

of example code into single segments, which enables our classifiers to prune non-source code

segments.

One limitation of this extraction algorithm is that it assumes code examples on Web

pages are independent and so it does not handle Web pages that provide several related code

examples that should be considered in concert, such as tutorials that list several steps or offer

several complementary alternatives. This limitation is not a large concern for reminder tasks

(as described in §4.1.2.4), as programmers typically know exactly what code they are looking

 60

for. However, it presents challenges when using Blueprint for learning tasks. This is discussed

further in §5.3.3.1 below.

5.2.3.1 Classifying example code

Given a set of clean, separate segments, the most straightforward approach to classifying

them as source code is to use a programming language parser and label segments that parse

correctly as code. For Blueprint, this would require ActionScript and MXML parsers,

because they are the two languages used by Adobe Flex. In practice, this approach yields

many false negatives: segments that contain code but are not labeled as such. For example,

code with line numbers or a typo will cause parsing to fail.

An alternate approach is to specify heuristics based on features unique to code, such

as curly braces, frequent use of language keywords, and lines that end with semi-colons [44].

This approach produces many fewer false negatives, but introduces false positives, such as

paragraphs of text that discuss code. Such paragraphs usually describe other source code

found on the page and are not useful on their own.

To remove buggy code that appears in forums and blog post comments, we ignore all

segments that follow a comment block (where a comment block is a block that includes the

word “comment”) and all Web pages that include “group” or “forum” in the URL.

We computed precision (MXML: 84%, AS: 91%) and recall (MXML: 90%, AS: 86%) on

40 randomly sampled Web pages from a corpus of the 2000 most frequently visited Web pages

from the Adobe Community Help Search Web site. We compared the examples extracted by

Blueprint to the examples manually extracted by two researchers. (“Precision” measures the

percentage of extracted blocks that are actually examples; “Recall” measures the percentage of

 61

actual examples that are correctly extracted.) Precision was mainly affected by misclassifying

source examples in other languages (e.g., HTML, JavaScript, and ColdFusion) as MXML or

ActionScript. Recall differed among types of Web pages. API reference Web pages, which are

often produced automatically, were much easier to parse than tutorial Web pages, which vary

greatly in the types of examples they show.

5.2.3.2 Extracting text and running examples

In addition to extracting source code, Blueprint extracts English descriptions and, where

possible, running examples for each code segment. Informal inspection of pages containing

example code found that the text immediately preceding an example almost always

described the example, and running examples almost always occurred after the example

code.

To build descriptions, Blueprint iteratively joins the segments immediately

preceding the code until any of three conditions is met: 1.) we encounter another code

segment, 2.) we encounter a segment indicative of a break in content (those generated by

DIV, HR, or heading tags), or 3.) we reach a length threshold (currently 250 words). Using

this strategy the English we extract is the correct example description roughly 83% of the

time as compared to the descriptions manually extracted by two researchers.

To find running examples, Blueprint analyzes the k segments following a code

example. Because we are concerned with Flex, all examples occur as Flash SWF files. We

search for references to SWF files in OBJECT and SCRIPT tags. In practice, we have found

k = 3 works best; larger values resulted in erroneous content, such as Flash-based

advertisements.

 62

5.2.3.3 Keeping track of changes to examples

Each time a page is crawled, Blueprint checks for updates to the examples (e.g., bug fixes). It

performs an exhaustive, pairwise comparison of examples on the new and old pages using the

diff tool. Pages typically contain fewer than ten examples. If an example on the new and old

pages matches exactly, they are deemed the same. If a new example has more than two-thirds

of its lines in common with an old example, it is recorded as changed. Otherwise, the new

example is added to the repository. When an example is no longer available on the Web, we

keep the cached versions but do not display it as part of search results. The database stores

each example with a timestamp, and keeps all previous versions. These timestamps allow

Blueprint to notify users when an example changes.

5.3 EVALUATION: STUDYING BLUEPRINT IN THE LAB

We conducted a comparative laboratory study with 20 participants to better understand

how Blueprint affects the example-centric development process. The laboratory study

evaluated three hypotheses:

H1: Programmers using Blueprint will complete directed tasks more quickly than
those who do not because they will find example code faster and bring it into their
project sooner.

H2: Code produced by programmers using Blueprint will have the same or higher
quality as code written by example modification using traditional means.

H3: Programmers who use Blueprint produce better designs on an exploratory
design task than those using a Web browser for code search.

5.3.1 METHOD

We recruited twenty professional programmers through an internal company mailing list

and compensated them with a $15 gift card. The participants had an average of 11.3 years of

 63

professional experience. Fourteen reported at least one year of programming experience with

Flex; twelve reported spending at least 25 hours a week programming in Flex.

The participants were given an off-the-shelf installation of Flex Builder, pre-loaded

with three project files. The participants in the control condition were provided with the

Firefox Web browser; they were asked to use the Adobe Community Help Search engine to

look for example code. Participants in the treatment condition were provided with

Blueprint to search for code samples; they were not allowed to use a Web browser.

Participants were first asked to complete a tutorial, which taught them about the

search interface they had been assigned. After completing the tutorial, participants were

given a directed task, and an exploratory task. Participants were told that they would be timed

and that they should approach both tasks as though they are prototyping and not writing

production-level code. Participants began each task with a project file that included a

running application, and they were asked to add additional functionality.

For the tutorial, participants were given a sample application that contained an

HTML browsing component and three buttons that navigated the browser to three

different Web sites. Participants received a written tutorial that guided them through adding

fade effects to the buttons and adding a busy cursor. In the control condition, the

participants were asked to use the Web browser to find sample code for both modifications.

The tutorial described which search result would be best to follow and which lines of code

to add to the sample application. In the treatment condition, the participants were asked to

use Blueprint to find code samples.

For the directed programming task, the participants were instructed to use the

URLLoader class to retrieve text from a URL and place it in a text box. They were told that

 64

they should complete the task as quickly as possible. In addition, the participants were told

that the person to complete the task fastest would receive an additional gift card as a prize.

Participants were given 10 minutes to complete this task.

For the exploratory programming task, participants were instructed to use Flex

Charting Components to visualize an array of provided data. The participants were

instructed to make the best possible visualization. They were told that the results would be

judged by an external designer and the best visualization would win an extra gift card.

Participants were given 15 minutes to complete this task.

To conclude the study, we asked the participants a few questions about their

experience with the browsing and searching interface.

5.3.2 RESULTS

This section reports on the results of the comparative study, broken down by task.

5.3.2.1 Directed task

Nine out of ten Blueprint participants and eight out of ten control participants completed

the directed task. Because not all participants completed the task and completion time may

not be normally distributed, we report all significance tests using rank-based non-parametric

statistical methods (Wilcoxon-Mann-Whitney test for rank sum difference and Spearman

rank correlation).

We ranked the participants by the time until they pasted the first example (See

Figure 5.4). Participants using Blueprint pasted code for the first time after an average of 57

seconds, versus 121 seconds for the control group. The rank-order difference in time to first

paste was significant (p < 0.01). Among finishers, those using Blueprint finished after an

 65

average of 346 seconds, compared to 479 seconds for the control. The rank-order difference

for all participants in task completion time was not significant (p = 0.14). Participants’ first

paste time correlates strongly with task completion time (rs = 0.52, p = 0.01). This suggests

that lowering the time required to search for, selecting and copying examples will speed

development.

A professional software engineer external to the project rank-ordered the

participants’ code. He judged quality by whether the code met the specifications, whether it

included error handling, whether it contained extraneous statements, and overall style.

Participants using Blueprint produced significantly higher-rated code (p = 0.02). We

hypothesize this is because the example-centric result view in Blueprint makes it more likely

that users will choose a good starting example. When searching for “URLLoader” using the

Adobe Community Help search engine, the first result contains the best code. However, this

result’s snippet did not convey that the page was likely to contain sample code. For this

reason, we speculate that some control participants overlooked it.

5.3.2.2 Exploratory task

A professional designer rank-ordered the participants’ charts. To judge chart quality, he

considered the appropriateness of chart type, whether or not all data was visualized, and

Figure 5.4: Comparative laboratory study results. Each graph shows the relative rankings of participants.
Participants who used Blueprint are shown as filled squares, those who used Community Help are shown as
open squares.

best worst

best worst

Directed Task Code Quality

Exploratory Task Chart QualityDirected Task Completion Time

Directed Task Time to First Paste

fastest slowest

fastest slowest

 66

aesthetics of the chart. The sum of ranks was smaller for participants using Blueprint (94 vs.

116), but this result was not significant (p = 0.21). While a larger study may have found

significance with the current implementation of Blueprint, we believe improvements to

Blueprint’s interface (described below) would make Blueprint much more useful in

exploratory tasks.

5.3.2.3 Areas for improvement

When asked “How likely would you be to install and use Blueprint in its current form?”

participants responses averaged 5.1 on a 7-point Likert scale (1 = “not at all likely”,

7 = “extremely likely”). Participants also provided several suggestions for improvement.

The most common requests were for greater control over result ranking. Two users

suggested that they should be able to rate (and thus affect the ranking of) examples. Three

users expressed interest in being able to filter results on certain properties such as whether

result has a running example, the type of page that the result was taken from (blog, tutorial,

API documentation, etc.), and the presence of comments in the example. Three participants

requested greater integration between Blueprint and other sources of data. For example, one

participant suggested that all class names appearing in examples be linked to their API page.

Finally, three participants requested maintaining a search history; one also suggested a

browseable and searchable history of examples used. We implemented the first two

suggestions before the field deployment. The third remains future work.

5.3.3 DISCUSSION

In addition to the participants’ explicit suggestions, we identified a number of shortcomings

as we observed participants working. It is currently difficult to compare multiple examples

 67

using Blueprint. Typically, only one example fits on the screen at a time. To show more

examples simultaneously, one could use code-collapsing techniques to reduce each

example’s length. Additionally, Blueprint could show all running examples from a result set

in parallel. Finally, visual differencing tools might help users compare two examples.

We assumed that users would only invoke Blueprint once per task. Thus, each time

Blueprint is invoked, the search box and result area would be empty. Instead, we observed

that users invoked Blueprint multiple times for a single task (e.g., when a task required several

blocks of code to be copied to disparate locations). Results should be persistent, but it

should be easier to clear the search box: when re-invoking Blueprint, the terms should be pre-

selected so that typing replaces them.

5.3.3.1 Where Blueprint fails

Blueprint does not work equally well for all tasks. In particular, Blueprint is not appropriate

for many learning tasks (described in Chapter 4). For example, if a programmer wants to

learn how to implement drag-and-drop in Flex, Blueprint would be cumbersome to use.

Implementing drag-and-drop requires adding about three distinct blocks of code to different

parts of one’s codebase, and all of these blocks must interact with each other. Code examples

for these blocks don’t completely convey why each is necessary; explanatory prose makes this

much more clear. Blueprint’s interface makes it difficult to see multiple examples at the same

time, and eliminates much of the related explanatory prose.

 68

5.4 DESIGN SPACE OF WEB TOOLS FOR PROGRAMMERS

Blueprint represents one point in the design space of tools that support programmers as they

use the Web (see Figure 5.5). We discuss Blueprint’s limitations in the context of this design

space and suggest directions for future work.

Task: At a high level, programming comprises: planning and design;

implementation; and testing and debugging. Blueprint helps programmers find code that

implements desired functionality. Other tasks could (and do) benefit from Web search [79],

but are not easily completed with Blueprint’s interface. For example, to decipher a cryptic

error message, one may want to use program output as the search query [42].

Expertise: Programmers vary in expertise with the tools they use (e.g., languages and

libraries), and their tasks (e.g., implementing a piece of functionality). Because Blueprint

presents code-centric results, programmers must have the expertise required to evaluate

whether a result is appropriate.

Time scale: We designed Blueprint to make small tasks faster by directly integrating

search into the code editor. This removes the activation barrier of invoking a separate tool.

While Blueprint can be docked to be persistent, for longer information tasks, the advantages

of a richer browser will dominate the time savings of direct integration.

Approach: Programmer Web use can include very directed search tasks as well as

exploratory browsing tasks. Given its emphasis on search, the Blueprint prototype is best

suited to directed tasks: a well-specified query can efficiently retrieve a desired result. It is

possible to use Blueprint for exploratory tasks, such as browsing different types of charts,

 69

however support for such tasks can be improved by incorporating traditional Web browser

features such as tabbed browsing and search results sorting and filtering.

Integration Required: Some examples can be directly copied. Others require

significant modification to fit the current context. Because Blueprint inserts example code

directly into the user’s project, it provides the most benefit when example code requires little

modification. When a piece of code is part of a larger project, the programmer may need to

read more of the context surrounding the code in order to understand how to adapt it.

Figure 5.5: Design space of tools to aid programmers’ Web use. Blueprint is designed to address the portion
of the space shown with a shaded background.

Task

Expertise

Time Scale

Approach

Integration
Required

Planning &
design Implementation Testing &

debugging

Novice with
task & tools

Knowledable about tools,
novice with task

Knowledgable about
task & tools

minutes hours days

directed exploratory

copyable
directly

large amount of
modification necessary

 70

CHAPTER 6 LONGITUDINAL STUDY OF
BLUEPRINT: DEPLOYMENT TO 2,024 USERS

To better understand how Blueprint would affect the workflow of real-world programmers,

we made Blueprint publicly available on the Adobe Labs Web site (see Figure 6.1), and

logged its use. After three months, we conducted open-ended interviews with four frequent

users. Three themes emerged. First, the interviewees felt that the benefits of consistent,

example-centric results outweigh the drawbacks of missing context. Second, they claimed

that Blueprint is symbiotic with existing IDE features. Third, they reported using Blueprint

primarily to clarify existing knowledge and remind themselves of forgotten details.

To understand whether these three themes applied broadly, we compared Blueprint’s

query logs to logs from a traditional search interface. We tested three hypotheses: First, if

additional context is not necessary, Blueprint queries should have a significantly lower click-

through rate. Second, if users are using Blueprint in concert with other IDE features, they are

likely querying with code and more Blueprint search terms should contain correctly formatted

code. Third, if Blueprint is used for reminders, Blueprint users should repeat queries more

 71

f r e q u e n t l y a c r o s s s e s s i o n s . E v i d e n c e f o r a l l t h r e e o f t h e s e h y p o t h e s e s w a s f o u n d i n t h e l o g s ,

i n d i c a t i ng t h a t u s e r s a r e s e a r c h i n g d i f f e r e n t l y w i t h B l u e p r i n t t h a n w i t h t r a d i t i o n a l t o o l s .

T h e s e f i n d i n g s s u g g e s t t h a t t a s k - s p e c i f i c s e a r c h i n t e r f a c e s m a y c a u s e a f u n d a m e n t a l s h i f t i n

h o w a n d w h e n i n d i v i d u a l s s e a r c h t h e W e b .

O v e r t h e c o u r s e o f t h e d e p l o y m e n t , w e p e r f o r m e d b u g f i x e s a n d m i n o r d e s i g n

i m p r o v e m e n t s (o f t e n b a s e d o n u s e r f e e d b a c k t h r o u g h t h e A d o b e L a b s W e b f o r u m) ; t h e

m a i n i n t e r a c t i o n m o d e l r e m a i n e d c o n s t a n t t h r o u g h o u t t h e s t u d y .

A t t h e c o m p l e t i o n o f t h e s t u d y , w e c o n d u c t e d 3 0 - m i n u t e i n t e r v i e w s w i t h f o u r a c t i v e

B l u e p r i n t u s e r s t o u n d e r s t a n d h o w t h e y i n t e g r a t e d B l u e p r i n t i n t h e i r w o r k f l o w s . B a s e d o n

t h e i n t e r v i e w s , w e f o r m e d t h r e e h y p o t h e s e s , w h i c h w e t e s t e d w i t h t h e B l u e p r i n t u s a g e l o g s .

A f t e r e v a l u a t i n g t h e s e h y p o t h e s e s , w e p e r f o r m e d f u r t h e r e x p l o r a t o r y a n a l y s i s o f t h e l o g s . T h i s

a d d i t i o n a l a n a l y s i s p r o v i d e d h i g h - l e v e l i n s i g h t a b o u t c u r r e n t u s e t h a t w e b e l i e v e w i l l h e l p

g u i d e f u t u r e w o r k i n c r e a t i n g t a s k - s p e c i f i c s e a r c h i n t e r f a c e s .

Figure 6.1: Screenshot of the Blueprint Web page on Adobe Labs. Blueprint was made publicly available on
May 27, 2009.

 72

6.1 INSIGHTS FROM INTERVIEWING ACTIVE USERS

Our interviews with active users uncovered three broad insights about the Blueprint

interface. To understand if these insights generalize, we distilled each insight into a testable

hypothesis. The insights and hypotheses are presented here; the results of testing them are

presented in the following section.

6.1.1 THE BENEFITS OF CONSISTENT, EXAMPLE-CENTRIC RESULTS
OUTWEIGH THE DRAWBACKS OF MISSING CONTEXT.

A consistent view of results makes scanning the result set more efficient. However, in general,

removing content from its context may make understanding the content more difficult.

None of our interviewees found lack of context to be a problem when using Blueprint. One

interviewee walked us through his strategy for finding the right result: “Highlighting [of the

search term in the code] is the key. I scroll through the results quickly, looking for my search

term. When I find code that has it, I can understand the code much faster than I could

English.” We hypothesize that examining code to determine if a result is relevant has a

smaller gulf of evaluation [48] than examining English. Presenting results in a consistent

manner makes this process efficient.

When users desire additional context for a Blueprint result, they can click through to

the original source Web page. This Web page opens in the same window where Blueprint

results are displayed. If additional context is rarely necessary, we expect a low click-through

rate.

H1: Blueprint will have a significantly lower click-through rate than
seen in a standard search engine.

 73

6.1.2 BLUEPRINT IS SYMBIOTIC WITH EXISTING IDE FEATURES

Three interviewees reported using Blueprint as an “extension” to auto-complete. They use

auto-complete as an index into a particular object’s functionality, and then use Blueprint to

quickly understand how that functionality works. For example, auto-complete would help

them select a particular “write” method to call on a File object, and Blueprint would then

provide an example for how to call that method as well as related error handling code

necessary to use the “write” method robustly. This suggests that embedding search into the

development environment creates a symbiotic relationship with other features. Here, auto-

complete becomes more useful because further explanation of the auto-complete results is

one keystroke away. We believe that this symbiotic relationship is another example of how

integrating task-specific search into a user’s existing tools can lower search costs.

Programmers in our lab study routinely search with code terms when using standard

search engines (see Chapter 4). However, when these search terms are typed by hand, they

frequently contain formatting inconsistencies (e.g., method names used as search terms are

typed in all lowercase instead of camelCase). By contrast, when search terms come directly

from a user’s code (e.g., generated by output from auto-complete), the search terms will be

correctly formatted. If Blueprint is being used in a symbiotic manner with other code editing

tools, we expect to see a large number of correctly formatted queries.

H2: Blueprint search terms will contain correctly formatted code more
often than search terms used with a standard search engine.

6.1.3 BLUEPRINT IS USED HEAVILY FOR CLARIFYING EXISTING KNOWLEDGE
AND REMINDING OF FORGOTTEN DETAILS.

One interviewee stated that, using Blueprint, he could find what he needed “60 to 80 percent

of the time without having to go to API docs.” He felt that Blueprint fell in the “mid-space

 74

between needing to jump down into API docs when you don’t know what you’re doing at all

and not needing help because you know exactly what you are doing.” Other interviewees

echoed this sentiment. In general, they felt that Blueprint was most useful when they had

some knowledge about how to complete the task at hand, but needed a piece of clarifying

information. That is, Blueprint was most useful for the reminding and clarifying tasks

described in the taxonomy from Chapter 4.

In general, understanding a user’s search goal from query logs alone is not feasible—

there is simply not enough contextual information available [36]. However, if uses of

Blueprint tend more toward reminding and clarifying existing knowledge than learning new

skills, we expect that users will more commonly repeat queries they have performed in the

past.

H3: Users of Blueprint are more likely to repeat queries across sessions
than users of a standard search engine.

6.2 METHOD

To evaluate these hypotheses, one needs a comparison point. Adobe’s Community Help

search engine presents a standard Web search interface that is used by thousands of Flex

programmers. Furthermore, Community Help uses the same Google Custom Search Engine

that is part of Blueprint. In short, Blueprint and Community Help differ in their interaction

model, but are similar in search algorithm, result domain, and user base.

We randomly selected 5% of users who used the Community Help search engine over

the same period as the Blueprint deployment. We analyzed all logs for these users. In both

datasets, queries for individual users were grouped into sessions. A session was defined as a

sequence of events from the same user with no gaps longer than six minutes (identical to the

 75

definition used in Chapter 4.) Common “accidental” searches were removed (e.g., empty or

single-character searches, and identical searches occurring in rapid succession) in both

datasets.

We used the z-test for determining statistical significance of differences in means and

the chi-square test for determining differences in rates. Unless otherwise noted, all

differences are statistically significant at p < 0.01.

6.3 RESULTS

Blueprint was used by 2024 individuals during the 82 day deployment, with an average of 25

new installations per day. Users made a total of 17012 queries, or an average of 8.4 queries

per user. The 100 most active users made 1888 of these queries, or 18.8 queries per user.

The Community Help query logs used for comparison comprised 13283 users

performing 26036 queries, an average of 2.0 queries per user.

H1: Blueprint will have a significantly lower click-through rate than
seen in a standard search engine

Blueprint users clicked through to source pages significantly less than Community Help

users (µ = 0.38 versus 1.32). To be conservative: the mean of 0.38 for Blueprint is an over-

estimate. For technical reasons owing to the many permutations of platform, browser, and

IDE versions, click-throughs were not logged for some users. For this reason, this analysis

discarded all users with zero click-throughs.

 76

H2: Blueprint search terms will contain correctly formatted code more
often than search terms used with a standard search engine.

To test this hypothesis, we used the occurrence of camelCase words as a proxy for code

terms. The Flex framework’s coding conventions use camelCase words for both class and

method names, and camelCase rarely occurs in English words.

Significantly more Blueprint searches contained camelCase than Community Help:

49.6% (8438 of 17012) versus 16.2% (4218 of 26036). The large number of camelCase

words in Blueprint searches indicates that many searches are being generated directly from

users’ code. This suggests that, as hypothesized, Blueprint is being used in a symbiotic way

with other IDE features. The large number of camelCase queries in Blueprint searches also

indicates that the majority of searches use precise code terms. This suggests that Blueprint is

being used heavily for clarification and reminding, where the user has the knowledge

necessary to select precise search terms.

H3: Users of Blueprint are more likely to repeat queries across sessions
than users of a standard search engine.

Significantly more Blueprint search sessions contained queries that had been issued by the

same user in an earlier session than for Community Help: 12.2% (962 of 7888 sessions)

versus 7.8% (1601 of 20522 sessions).

6.4 EXPLORATORY ANALYSIS

To better understand how Blueprint was used, we performed additional exploratory analysis

of the usage logs. We present our most interesting findings below.

 77

6.4.1 USING BLUEPRINT AS A RESOURCE TO WRITE CODE BY HAND IS COMMON.

A large percentage of sessions (76%) did not contain a copy-and-paste event. There are two

possible reasons for this high number: First, as our interviewees reported, we believe

Blueprint is commonly used to confirm that the user is on the right path – if they are, they

have nothing to copy. Second, sometimes Blueprint’s results aren’t useful. (For technical

reasons, copy-and-paste events were not logged on some platforms. The statistic presented

here is only calculated amongst users were we could log this event. In this data set, there were

858 sessions that contained copy-and-paste events out of a total of 3572 sessions.)

6.4.2 PEOPLE SEARCH FOR SIMILAR THINGS USING BLUEPRINT AND COMMUNITY HELP,
BUT THE FREQUENCIES ARE DIFFERENT.

We examined the most common queries for Blueprint and Community Help and found that

there was a large amount of overlap between the two sets: 10 common terms appeared in the

top 20 queries of both sets. The relative frequencies, however, differed between sets. As one

example, the query “Alert” was significantly more frequent in Blueprint than Community

Help. It was 2.2 times more frequent, ranking 8th versus 34th.

The initial result views for search “Alert” for both Blueprint and Community Help

are shown in Figure 6.2. In the case of this particular search, we believe the difference in

frequency is explained by the granularity of the task the user is completing. Namely, this task

is small. When a user searches for “Alert,” he is likely seeking the one line of code necessary to

display a pop-up alert window. In Blueprint, the desired line is immediately visible and

highlighted; in Community Help, the user must click on the first result and scroll part way

down the resulting page to find the code. Alerts are often used for debugging, where there are

reasonable—but less optimal—alternative approaches (e.g., “trace” statements). It may be

 78

t h e c a s e t h a t B l u e p r i n t ’ s l o w e r e d s e a r c h c o s t c h a n g e s u s e r b e h a v i o r . U s e r s w h o d o n o t h a v e

B l u e p r i n t m o r e f r e q u e n t l y s e t t l e f o r s u b - o p t i m a l a p p r o a c h e s b e c a u s e o f t h e r e l a t i v e l y h i g h e r

c o s t o f t a k i n g t h e o p t i m a l a p p r o a c h .

6.4.3 BOTH INTERFACE MODALITIES ARE IMPORTANT

U s e r s c a n i n t e r a c t w i t h b l u e p r i n t e i t h e r a s a p o p - u p w i n d o w o r i n s i d e a d o c k e d p a n e l . T h e

d e f a u l t m o d a l i t y i s t h e p o p - u p w i n d o w . U s e r s m u s t e x p l i c i t l y d o c k t h e p o p - u p i f t h e y w i s h t o

u s e t h i s i n t e r f a c e , b u t m a y s t a r t s u b s e q u e n t s e a r c h s e s s i o n s f r o m t h e d o c k e d i n t e r f a c e i f i t i s

a l r e a d y o p e n . A m o n g a l l u s e r s , 5 9 % o f s e s s i o n s u s e d o n l y t h e p o p - u p i n t e r f a c e , 9 % u s e d o n l y

t h e d o c k e d i n t e r f a c e , a n d 3 2 % u s e d b o t h . T h i s s u g g e s t s t h a t p r o v i d i n g b o t h i n t e r f a c e s i s

i m p o r t a n t . F u r t h e r m o r e t h e f a c t t h a t u s e r s f r e q u e n t l y s w i t c h e d b e t w e e n i n t e r f a c e s m i d -

s e s s i o n s u g g e s t s t h a t s o m e t a s k s a r e m o r e a p p r o p r i a t e f o r a p a r t i c u l a r i n t e r f a c e .

Figure 6.2: Comparison of Blueprint (left) and Commmunity Help (right) search result interfaces for the query
“Alert”. The desired information is immediately available in Blueprint; Community Help users must click the
first result and scroll part way down the page to find the same information.

 79

6.5 USER RETENTION

Are early adopters of Blueprint still using it, or is Blueprint simply an interesting curiosity

that users pick up, try a few times, and set aside? The controlled study presented above

reports on usage over 3 months. After Blueprint had been available for 200 days, its user base

had grown to 3253, with an average of 16.3 new users per day. During this time, the most

active third of users (1084) searched with Blueprint over at least a 10-day span. The top 10%

of users (325) queried Blueprint over at least a 59-day span, and the top 1% of users (33)

queried Blueprint over at least a 151-day span. For legal reasons, we were unable to track

users across re-installations of Flex Builder. So, if a user re-installed or upgraded Flex Builder,

they were counted as a new user. As such, these numbers under-report actual retention.

6.6 CONCLUSION

To support programming by example modification, this chapter introduced a user interface

for accessing online example code from within the development environment. It discussed the

Blueprint client interface, which displays search results in an example-centric manner. The

Blueprint server introduced a lightweight architecture for using a general-purpose search

engine to create code-specific search results that include written descriptions and running

examples. In evaluating Blueprint, we found that it enabled users to search for and select

example code significantly faster than with traditional Web search tools. Log analysis from a

large-scale deployment with 2,024 users suggested that task-specific search interfaces may

cause a fundamental shift in how and when individuals search the Web.

 80

CHAPTER 7 REHEARSE: HELPING
PROGRAMMERS UNDERSTAND EXAMPLES

 Instructive examples have long played a central role in programming practice [74], and Web

search tools like Blueprint (Chapter 5) help programmers to locate high-quality examples.

However, locating quality examples is just the first step in the example-use pipeline: with a

potentially useful example in hand, a programmer must understand the example, and then

adapt the example to her particular use case.

Despite examples’ pervasiveness, current mainstream editing environments offer

little specialized support for understanding and adapting examples. What interactions might

assist programmers in using examples more effectively? While answering this question

completely is beyond the scope of this thesis, this chapter presents initial work on developing

interaction techniques that help programmers understand examples.

Previous research suggests that programmers prefer examples that are complete,

executable applications [74]. Examples in this form show relevant code in context,

providing information about how it should be used. The downside of complete examples is

 81

t h a t t h e y n e c e s s a r i l y c o n t a i n a l a r g e a m o u n t o f i r r e l e v a n t “ b o i l e r p l a t e ” c o d e w i t h r e l e v a n t

l i n e s i n t e r l e a v e d t h r o u g h o u t . T h e m a i n i n s i g h t p r e s e n t e d i n t h i s c h a p t e r i s t h a t effective use of

examples hinges on the programmer's ability to quickly identify a small number of relevant lines

interleaved among a larger body of boilerplate code.

T o e x p l o r e t h i s i n s i g h t , w e b u i l t Rehearse, w h i c h i s a n e x t e n s i o n o f t h e o p e n s o u r c e

P r o c e s s i n g d e v e l o p m e n t e n v i r o n m e n t [2 8] . P r o c e s s i n g u s e s a v a r i a n t o f t h e J a v a

p r o g r a m m i n g l a n g u a g e a n d i s c o m p l e t e l y i n t e r o p e r a b l e w i t h s t a n d a r d J a v a l i b r a r i e s .

R e h e a r s e e n a b l e s t w o i n t e r a c t i o n s n o t a v a i l a b l e i n P r o c e s s i n g . F i r s t , R e h e a r s e l i n k s p r o g r a m

e x e c u t i o n t o s o u r c e c o d e b y h i g h l i g h t i n g e a c h l i n e o f c o d e a s i t i s e x e c u t e d (s e e Figure 7.1) .

T h i s e n a b l e s p r o g r a m m e r s t o q u i c k l y d e t e r m i n e w h i c h l i n e s o f c o d e a r e i n v o l v e d i n

p r o d u c i n g a p a r t i c u l a r i n t e r a c t i o n . S e c o n d , a f t e r a p r o g r a m m e r h a s f o u n d a s i n g l e l i n e

a p p l i c a b l e t o h e r t a s k , R e h e a r s e a u t o m a t i c a l l y i d e n t i f i e s o t h e r l i n e s t h a t a r e a l s o l i k e l y t o b e

r e l a t e d (s e e Figure 7.2) .

Figure 7.1: The Rehearse development environment, visualizing the execution of an example application. The
user interacts with the running application (A). Lines that have recently executed are highlighted in dark
green (B). As execution progresses, lines executed less recently fade to light green (C).

 82

We compared Rehearse to the unmodified Processing environment in the lab with

12 participants. We found that by using these interactions participants were able to adapt

example code significantly faster.

7.1 OBSERVING EXAMPLE ADAPTATION

To inform the design of Rehearse, we observed five individuals in the lab as they searched for,

evaluated, and adapted example code. Five university students participated in an hour-long

unpaid observation. All the participants had previous experience with Java; only one was

familiar with Processing.

We first asked participants to follow a standard tutorial on Processing’s Web site.

Participants were then asked to perform two tasks: The first was to create an analog clock

with numbers. We provided participants with two example applications: an analog clock

without numbers and an application that drew text on a canvas. The second task was more

open-ended. Participants were asked to create a custom paintbrush tool of their choice. We

seeded them with ideas, such as “spray paintbrush” and “soft hair paintbrush.” Participants

were provided with a broad example database, including a few with functionality that was

directly relevant to the task (such as mouse press and mouse drag).

In addition to the provided examples, participants were free to use any online

resources. We encouraged participants to think aloud by asking open-ended questions as

they worked.

 83

7.1.1 OBSERVATIONS

Participants routinely executed examples before inspecting the source code. For example,

one participant opened an example and immediately stated, “I’m going to run this and figure

out what it does.” We believe that this initial execution allowed participants to form a

mental model of how the source code should be structured, which guided their subsequent

inspection of the code itself.

We found that when participants read source code, they were very good at

identifying a single “seed” line relevant to their task. For example, they could rapidly identify

the line of code that actually drew text to the canvas because it contained a string literal.

However, it took them much longer to identify related lines, such as those that loaded and

selected a font or set the drawing position. Often, they would fail to identify some relevant

lines, which would lead to confusing bugs. In the provided example on drawing text, the line

that set the font was in a setup function far away from the line that actually drew text. As a

result, several participants did not see this line, and mistakenly assumed that there was a

default font.

After participants found a potential “seed” line, they would frequently make a small

modification to that line and then re-execute the application. This modification was largely

epistemic [49]: it wasn’t in support of the eventual adaptation they needed to make to achieve

their goal. Instead, it served as a way to confirm that they were on the right path. We

hypothesized that by providing a more efficient way to confirm that particular lines of code

were linked to desired output behavior, we could increase the utility of this epistemic action.

 84

7.2 REHEARSE

Rehearse extends the Processing development environment [28] with two interactions

designed to support understanding and adapting example code.

7.2.1 EXECUTION HIGHLIGHTING

During execution of the user’s program, Rehearse highlights each line of code as it is executed

(Figure 7.1). The line currently executing is highlighted in dark green. As execution

progresses, the highlighting slowly fades to light green, which gives the programmer an

overview of which lines have executed most recently. Execution highlighting can be enabled

or disabled using a toggle button in the toolbar.

Execution highlighting directly links what is happening in the program’s output to

the code responsible for that output. This link allows the programmer to use the running

application as a query mechanism: to find code relevant to a particular interaction, the

programmer simply performs that interaction. Because the visualization is produced in

realtime, this makes it easy to answer questions such as “is the MouseDrag handler called

only at the start of a mouse drag event, or continuously throughout the drag?”

Execution highlighting can help programmers find some of the lines of code that are

relevant to their task. For example, it can help a programmer locate the line of code that

draws text to the screen. It may not, however, help them find related but infrequently

executed lines of code such as those required for setup. When using execution highlighting

alone, a programmer could easily miss an important line of code that, for example, loads a

font.

 85

7.2.2 RELATED LINES

Using Rehearse, the programmer can press a hotkey to identify lines of code that are likely

related to the one she is currently editing (Figure 7.2). Related lines are demarcated by an

orange highlight in the left margin of the editor. To determine which lines are related to the

current line, the system examines all invocations of API methods on that line. The system

then highlights any line that invokes a related method, as determined by a pre-computed

mapping described below.

7.2.3 IMPLEMENTATION

The execution highlighting feature of Rehearse was implemented by adding a custom Java

interpreter to Processing. Our interpreter is based heavily on BeanShell [65], which was

Figure 7.2: Rehearse indicating lines related to the line currently being edited. The user’s cursor is circled in
green; related lines are identified by orange highlights in the left margin. Display of related lines is triggered by a
hotkey.

 86

modified to support the Processing language, and to provide tracing of execution. When

execution highlighting is enabled, the user’s code is executed in the interpreter. Calls to

external methods (for example, those in the Processing API) are still executed as compiled

bytecode inside Java’s Virtual Machine, and the link between the interpreted and compiled

code is handled through Java’s reflection mechanism. This hybrid execution approach is

crucial to achieving acceptable performance for most applications. It allows, for example,

resource intensive API method calls to execute as fast as possible.

Determination of related lines is handled through a pre-computed mapping that

specifies what API methods are related to each other. This mapping is taken directly from

the Processing documentation; Java’s API documentation provides a similar “related

methods” paradigm.

7.3 PILOT STUDY OF REHEARSE

We hypothesized that Rehearse would help users understand and adapt example code more

quickly because it would reduce the cost of identifying which lines are relevant to their task.

To explore this hypothesis, we ran a pilot lab study.

7.3.1 METHOD

We recruited 12 university affiliates for a 45-minute, unpaid study. We required all

participants to have proficiency in Java (at least equivalent to what is taught in the first year

of a typical undergraduate CS curriculum). No participants in our study had familiarity with

Processing.

 87

Participants were randomly assigned to a control or treatment condition. Control

users were provided with the current Processing IDE and treatment users were provided

with Rehearse. All participants completed a tutorial on Processing adapted from

Processing’s Web site, and treatment participants were introduced to Rehearse’s features

through this tutorial. We then provided participants with written instructions asking them

to complete two tasks. For each task, we measured task completion time and recorded

qualitative observations.

In the first task, participants started with an application that drew a rectangle on the

screen each time the user pressed a key. The height of the rectangle varied by letter case:

lower-case letters created rectangles half as tall as upper-case letters. Participants were asked

to modify the height of rectangles created by lower-case letters. Completing this task

required modifying one or two lines in an 89-line program, so participants were expected to

spend the majority of their time identifying those lines.

The second task was identical to the task used in our need-finding exercise:

Participants were asked to add numbers to a provided analog clock application. Completing

this task required integrating two existing applications, which necessitated writing or

modifying approximately 10 lines of code in a 100-line application.

7.3.2 RESULTS

In task 1, Rehearse uses completed the task faster than the control group (p < 0.06, Mann-

Whitney U test). Control participants completed the task in 18.3 minutes on average;

Rehearse uses spent 12.6 minutes on average, a 31% speed-up (see Table 7.1). One

 88

participant in the treatment group chose not to attempt the first task, and is not included in

these statistics.

In task 2, Rehearse users completed the task faster than the control group—17.4 vs.

22.2 minutes, a 22% speed-up—but this difference was not statistically significant (p ≈ 0.18,

Mann-Whitney U test). One participant in the treatment group chose not to attempt the

task, and is not included in these statistics.

7.3.3 DISCUSSION

The execution highlighting feature appeared to have the biggest impact on participants’

performance. This was most evident in Task 1, where the bulk of the task consisted of

understanding where in the code to make a very simple change. One participant said, “First, I

tried to hack around the example code to get it to work. When that did not work, I used

execution highlighting to actually understand the code.”

The related lines feature appeared useful for those participants who actually used it.

Only 3 of the 6 participants in the treatment group did so, and these participants only used it

on the second task. While it is not appropriate to draw conclusions from such a small sample,

it is interesting to note that three of the four fastest participants on Task 2 were those who

 Task 1 Task 2
 T C T C

1 14 22 18 18
2 15 23 21 16
3 — 20 16 23
4 7 14 17 16
5 13 21 15 41
6 14 10 — 19

Average 12.6 18.3 17.4 22.2

Table 7.1: Task completion times for treatment (T) and control (C) participants. Participants using Rehearse
completed the first task faster than those in the control condition (p < 0.06).

 89

used the related lines feature. Additionally, the second fastest control participant on Task 2

used the “related methods” portion of the Processing documentation, which provides the

same information in a less efficient manner.

The fact that the related lines feature was used infrequently suggests that it was not

discoverable. We also believe that, as it is currently implemented, making use of this feature

requires some skill at identifying when it might be useful. That is, the programmer has to have

the foresight to predict that there may be related lines that she is not aware of. Improving

this feature remains important future work.

7.4 CONCLUSION

Rehearse allows programmers to use examples more efficiently. The interactions supported

by Rehearse stem from the insight that effective use of examples hinges on the programmer's

ability to quickly identify a small number of relevant lines interleaved among a larger body of

boilerplate code. Execution highlighting and automatic identification of related lines make it

easier for programmers to focus their attention, leading to faster code understanding.

 90

CHAPTER 8 FUTURE DIRECTIONS

The Web has a substantially different cost structure than other information resources: It is

cheaper to search for information, but its diverse nature may make it more difficult to

understand and evaluate what is found. Understanding the Web’s role in knowledge work is a

broad area of research [18]. This dissertation illustrates an emerging problem solving style

that uses Web search to enumerate possible solutions. However, programmers—and likely,

other knowledge workers—currently lack tools for rapidly understanding and evaluating

these possible solutions. Experimenting with new tools in the “petri dish” of programming

may offer further insights about how to better support other knowledge workers.

8.1 TOWARD A COMPLETE PICTURE OF KNOWLEDGE WORK ON THE WEB

This dissertation presented empirical data on how programmers leverage the Web to solve

problems while programming. In many respects, programmers are an exemplar form of

knowledge worker: their work centers on identifying, breaking down, and solving problems.

Web resources will likely play an increasingly important role in problem solving in a broad

 91

range of domains. In order to build a more complete picture of knowledge work on the Web,

we must address several related issues.

First, the work presented here looks expressly at the Web. Many additional resources

exist, such as colleagues and books. It is clear that different resources have very different cost

structures: The cost of performing a Web query is substantially lower than interrupting a

colleague, but the latter may provide much better information. More work is needed to fully

understand these trade-offs.

Second, it would be valuable to better understand how a programmer’s own code is

reused between projects. In earlier fieldwork we observed that programmers had a desire to

reuse code, but found it difficult to do so because of lack of organization and changes in

libraries (Chapter 2).

Third, a complete understanding of knowledge work and the Web requires a richer

theory of what motivates individuals to contribute information, such as tutorials and code

snippets. How might we lower the threshold to contribution so that more developers share

sample code? Is it possible to “crowdsource” finding and fixing bugs in online code? Can we

improve the experience of reading a tutorial by knowing how the previous 1,000 readers used

that tutorial? These are just some of the many open questions in this space.

8.2 FURTHER TOOL SUPPORT FOR OPPORTUNISTIC PROGRAMMING

We have identified four broad areas that we believe would benefit from better tool support:

Code Reuse and Adaptation — The Web and tools like Blueprint have made a

wealth of example code available and easier to locate. Similarly, tools like Rehearse help

programmers understand examples more easily. The next step in this chain is to help

 92

programmers adapt those examples. Our group’s recent work on d.mix explores one potential

solution to this problem [39]. d.mix makes it easier for programmers to experiment with

Web APIs by allowing them to “sample” existing user interfaces, and then experiment with

the resulting code inside a wiki-like sandbox.

Additionally, we may be able to guide the user in adapting found code by collecting

information on how others have used that code. For example, if the last ten programmers to

use an example all changed a particular portion of the code, it’s likely that the eleventh

programmer should as well.

Debugging — In opportunistic programming, debugging is difficult for a number of

reasons: Many languages are used in a single project, code satisficing leads to code that is not

well encapsulated, and developers often refuse to invest time in learning complex (but

powerful) tools. We believe that there is significant value in building debugging tools that

embrace the way opportunistic programmers already work. For example, perhaps print

statements should be made a first-class tool. A development environment could make

inserting or removing a print statement as easy as setting a breakpoint. The debugger could

then capture a wealth of context at each of these “print”points: the call stack, the value of all

local variables, and a snapshot of the program’s output. Similarly, perhaps development

environments could take advantage of the rapid iteration inherent in opportunistic

programming — code that was written 30 seconds ago is likely the code that the

programmer wants to test and debug. Perhaps the “execution highlighting” interaction

introduced in Chapter 7, could be adapted to provide something like real-time coverage

checking. Simply indicating which lines of code were executed during the last run of the

program would help programmers avoid time consuming debugging mistakes.

 93

Alternatively, tools may be able to eliminate the need for rapid iteration in

specialized cases, such as parameter tuning. Through a tool called Juxtapose, our research

group introduced techniques for programmers to easily tune parameter values at runtime

[41]. Interactive tuning is particularly valuable for exploring user interface variations, as

alternatives can be considered without having to stop execution, edit, compile, execute, and

navigate to the previous state.

Version Control — Current version control systems have a large up-front setup and

learning cost, and are targeted at supporting the development of large systems by many

developers over months or years. What might version control look like for opportunistic

programming? Our observations suggest that programmers would benefit from version

control designed for a “10-minute scale”: Participants often wished that they could revert to

the code they had, e.g., two tests ago, or quickly branch and explore two ideas in parallel.

Perhaps single-user version control could be brought inside the editor, eliminating the setup

burden of current tools. In such a system, code committal could be performed automatically

each time the code is executed, reducing the need for programmers to think proactively

about version management. Finally, perhaps users could browse past versions by viewing

snapshots of the execution, removing the burden of explicitly specifying commit messages or

applying tags.

Documentation — Although much of the code that is written during opportunistic

programming is thrown away, the process itself is extremely valuable. An exhibit designer at

the Exploratorium commented that while he rarely went back to look at code from prior

projects, he often reviewed his process. Right now, however, the tools for documenting

 94

process (e.g., a notebook) are independent from the tools actually being used (e.g., Adobe

Flash). We believe that bridging this divide is a valuable path for future research.

8.3 THE FUTURE OF PROGRAMMING

Ultimately, opportunistic programming is as much about having the right skills as it is about

having the right tools. As tools become better, the skill set required of programmers changes.

In the future, programmers may no longer need any training in the language, framework, or

library du jour. Instead they will likely need ever-increasing skill in formulating and breaking

apart complex problems. It may be that programming will become less about knowing how

to do something and more about knowing how to ask the right questions.

 95

REFERENCES

1. Google Code Search. [cited 2010 November 17] http://code.google.com

2. Krugle. [cited 2010 November 17] http://www.krugle.com

3. pastebin. [cited 2010 November 17] http://pastebin.com/

4. Pygments. [cited 2010 November 17] http://pygments.org/

5. Flex & Flash Builder Help and Support. [cited 2010 November 9]
http://www.adobe.com/support/flex/

6. Adobe Developer Connection. [cited 2010 November 9]
http://www.adobe.com/devnet.html

7. Google Custom Search. [cited 2010 November 9] http://www.google.com/cse/

8. Adar, Eytan, Mira Dontcheva, James Fogarty, and Daniel S. Weld, Zoetrope: Interacting
with the Ephemeral Web, in Proceedings of UIST: ACM Symposium on User Interface
Software and Technology. 2008, Monterey, California. p. 239-248.

9. Bajracharya, Sushil, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi,
and Cristina Lopes, Sourcerer: A Search Engine for Open Source Code Supporting
Structure-Based Search, in Companion to OOPSLA: ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages, and Applications. 2006, Portland,
Oregon. p. 681-682.

10. Brandt, Joel, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer,
Opportunistic Programming: Writing Code to Prototype, Ideate, and Discover, in IEEE
Software. 2009. p. 18-24.

11. Brandt, Joel, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer,
Two Studies of Opportunistic Programming: Interleaving Web Foraging, Learning, and
Writing Code, in Proceedings of CHI: ACM Conference on Human Factors in Computing
Systems. 2009, Boston, Massachusetts. p. 1589-1598.

12. Brandt, Joel, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer, Example-
Centric Programming: Integrating Web Search into the Development Environment, in

 96

Proceedings of CHI: ACM Conference on Human Factors in Computing Systems. 2010,
Atlanta, Georgia. p. 513-522.

13. Brooks, Frederick P., The Mythical Man-Month: Essays on Software Engineering. 1995,
Reading, Massachusetts: Addison-Wesley.

14. Brutlag, Jake D., Hilary Hutchinson, and Maria Stone, User Preference and Search
Engine Latency, in Proceedings of QPRC: Quality & Productivity Research Conference.
2008, Madison, Wisconsin.

15. Brutlag, Jake D., Speed Matters for Google Web Search. 2009.

16. Carter, Scott, Jennifer Mankoff, Scott R. Klemmer, and Tara Matthews, Exiting the
Cleanroom: On Ecological Validity and Ubiquitous Computing. Human-Computer
Interaction, 2008. 23(1): p. 47-99.

17. Chong, Jan and Rosanne Siino, Interruptions on Software Teams: A Comparison of Paired
and Solo Programmers, in Proceedings of CSCW: ACM Conference on Computer Supported
Cooperative Work. 2006.

18. Choo, Chun Wei, Brian Detlor, and Don Turnbull, Web Work: Information Seeking and
Knowledge Work on the World Wide Web. 2000, Dordrecht: Kluwer Academic
Publishers. 219 pp.

19. Clarke, Steven, What is an End-User Software Engineer?, in End-User Software
Engineering Dagstuhl Seminar. 2007, Dagstuhl, Germany.

20. Cox, Anna L. and Richard M. Young, Device-Oriented and Task-Oriented Exploratory
Learning of Interactive Devices. Proceedings of ICCM 2000: International Conference
on Cognitive Modeling, 2000: p. 70-77.

21. Csíkszentmihályi, Mihály, Flow: The Psychology of Optimal Experience. 1990, New York:
Harper Collins.

22. Cypher, Allen, Watch What I Do: Programming by Demonstration. 1993, Cambridge,
Massachusetts: The MIT Press. 652 pp.

23. Cypher, Allen, Mira Dontcheva, Tessa Lau, and Jeffrey Nichols, No Code Required:
Giving Users Tools to Transform the Web. 2010, Burlington, Massachusetts: Morgan
Kaufmann. 512 pp.

 97

24. deHaan, Peter. Flex Examples. [cited 2010 November 17]
http://blog.flexexamples.com/

25. Detienne, Françoise, Software Design: Cognitive Aspects. 2001, New York: Springer. 146 pp.

26. Dontcheva, Mira, Steven M. Drucker, Geraldine Wade, David Salesin, and Michael F.
Cohen, Summarizing Personal Web Browsing Sessions, in Proceedings of UIST: ACM
Symposium on User Interface Software and Technology. 2006, Montreux, Switzerland. p.
115-124.

27. Dontcheva, Mira, Steven M. Drucker, David Salesin, and Michael F. Cohen, Relations,
Cards, and Search Templates: User-Guided Web Data Integration and Layout, in
Proceedings of UIST: ACM Symposium on User Interface Software and Technology. 2007,
Newport, Rhode Island. p. 61-70.

28. Fry, Ben and Casey Reas. Processing. http://processing.org

29. Gaul, Troy. Lightroom Exposed, Presentation at C4 Macintosh Development Conference.
[cited 2010 November 9] http://www.viddler.com/explore/rentzsch/videos/37

30. Gentner, D., Mental Models, Psychology of. International Encyclopedia of the Social
and Behavioral Sciences, 2002: p. 9683-9687.

31. Gentner, D., J. Loewenstein, and L. Thompson, Learning and Transfer: A General Role
for Analogical Encoding. Journal of Educational Psychology, 2003. 95(2): p. 393-408.

32. Gentner, Dedre, Keith J. Holyoak, and Boicho N. Kokinov, The Analogical Mind:
Perspectives from Cognitive Science. 2001, Cambridge: MIT Press.

33. Gick, M. L. and Keith J. Holyoak, Schema Introduction and Analogical Transfer.
Cognitive Psychology, 1983.

34. Goldman, Max and Robert C. Miller, Codetrail: Connecting Source Code and Web
Resources, in Proceedings of VL/HCC: IEEE Symposium on Visual Languages and
Human-Centric Computing. 2008, Herrsching am Ammersee, Germany. p. 65-72.

35. Gray, Wayne D. and Deborah A. Boehm-Davis, Milliseconds Matter: An Introduction to
Microstrategies and to Their Use in Describing and Predicting Interactive Behavior. Journal
of Experimental Psychology: Applied, 2000. 6(4): p. 322-335.

 98

36. Grimes, Carrie, Diane Tang, and Daniel M. Russell, Query Logs Alone are Not Enough,
in Workshop on Query Log Analysis at WWW 2007: International World Wide Web
Conference. 2007, Banff, Alberta.

37. Gross, Paul A., Micah S. Herstand, Jordana W. Hodges, and Caitlin L. Kelleher, A Code
Reuse Interface for Non-Programmer Middle School Students, in Proceedings of IUI:
International Conference on Intelligent User Interfaces. 2010, Hong Kong, China. p. 219-228.

38. Hartmann, Björn, Scott R. Klemmer, Michael Bernstein, Leith Abdulla, Brandon Burr,
Avi Robinson-Mosher, and Jennifer Gee, Reflective Physical Prototyping through
Integrated Design, Test, and Analysis, in Proceedings of UIST: ACM Symposium on User
Interface Software and Technology. 2006, Montreux, Switzerland. p. 299-308.

39. Hartmann, Björn, Leslie Wu, Kevin Collins, and Scott R. Klemmer, Programming by a
Sample: Rapidly Creating Web Applications with d.mix, in Proceedings of UIST: ACM
Symposium on User Interface Software and Technology. 2007, Newport, Rhode Island.
p. 241-250.

40. Hartmann, Björn, Scott Doorley, and Scott R. Klemmer, Hacking, Mashing, Gluing:
Understanding Opportunistic Design, in IEEE Pervasive Computing. 2008. p. 46-54.

41. Hartmann, Björn, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer,
Design as Exploration: Creating Interface Alternatives through Parallel Authoring and
Runtime Tuning, in Proceedings of UIST: ACM Symposium on User Interface Software and
Technology. 2008, Monterey, California.

42. Hartmann, Björn, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer, What
Would Other Programmers Do? Suggesting Solutions to Error Messages, in Proceedings of
CHI: ACM Conference on Human Factors in Computing Systems. 2010, Atlanta, Georgia.

43. Hearst, Marti A., Search User Interfaces. 2009, Cambridge: Cambridge University Press.

44. Hoffmann, Raphael, James Fogarty, and Daniel S. Weld, Assieme: Finding and
Leveraging Implicit References in a Web Search Interface for Programmers, in Proceedings of
UIST: ACM Symposium on User Interface Software and Technology. 2007, Newport,
Rhode Island. p. 13-22.

45. Hollan, James, Edwin Hutchins, and David Kirsh, Distributed Cognition: Toward a New
Foundation for Human-Computer Interaction Research. ACM Transactions on
Computer-Human Interaction, 2000. 7(2): p. 174-196.

 99

46. Hopper, Grace, Keynote Address, in History of Programming Languages, Richard L.
Wexelblat, Editor. 1981, New York: ACM Press. p. 7-20.

47. Houde, Stephanie and Charles Hill, What do Prototypes Prototype?, in Handbook of
Human-Computer Interaction, Martin G. Helander, Thomas K. Landauer, and Prasad V.
Prabhu, Editors. 1997, Amsterdam: Elsevier Science. p. 367-381.

48. Hutchins, Edwin L., James D. Hollan, and Donald A. Norman, Direct Manipulation
Interfaces. Human-Computer Interaction, 1985. 1(4): p. 311-338.

49. Kirsh, David and Paul Maglio, On Distinguishing Epistemic from Pragmatic Action.
Cognitive Science, 1994. 18(4): p. 513-549.

50. Ko, Andrew J., Brad A. Myers, and Htet Htet Aung, Six Learning Barriers in End-User
Programming Systems, in Proceedings of VL/HCC: IEEE Symposium on Visual
Languages and Human-Centric Computing. 2004, Rome, Italy. p. 199-206.

51. Ko, Andrew J. and Brad A. Myers, Finding Causes of Program Output with the Java
Whyline, in Proceedings of CHI: ACM Conference on Human Factors in Computing
Systems. 2009, Boston, Massachusetts. p. 1569-1578.

52. LaToza, Thomas D., Gina Venolia, and Robert DeLine, Maintaining Mental Models: A
Study of Developer Work Habits, in Proceedings of ICSE: International Conference on
Software Engineering. 2006, Shanghai, China. p. 492-501.

53. Lau, Tessa and Eric Horvitz, Patterns of Search: Analyzing and Modeling Web Query
Refinement, in Proceedings of UM: International Conference on User Modeling. 1999,
Banff, Alberta, Canada. p. 119-128.

54. Lieberman, Henry, Your Wish Is My Command: Programming by Example. 2001, San
Francisco: Morgan Kaufmann. 448 pp.

55. Lieberman, Henry, Fabio Paternò, and Volker Wulf, End-User Development. 2006, New
York: Springer. 492 pp.

56. Lin, James, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A. Lau, End-User
Programming of Mashups with Vegemite, in Proceedings of IUI: International Conference
on Intelligent User Interfaces. 2009, Sanibel Island, Florida. p. 97-106.

57. Little, Greg and Robert C. Miller, Translating Keyword Commands into Executable Code,
in Proceedings of UIST: ACM Symposium on User Interface Software and Technology.
2006, Montreux, Switzerland. p. 135-144.

 100

58. Little, Greg, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser
Kandogan, Koala: Capture, Share, Automate, Personalize Business Processes on the Web, in
Proceedings of CHI: ACM Conference on Human Factors in Computing Systems. 2007,
San Jose, California. p. 943-946.

59. MacLean, Allan, Kathleen Carter, Lennart Lövstrand, and Thomas Moran, User-
Tailorable Systems: Pressing the Issues with Buttons, in Proceedings of CHI: ACM
Conference on Human Factors in Computing Systems. 1990, Seattle, Washington.
p. 175-182.

60. Mandelin, David, Lin Xu, Rastislav Bodík, and Doug Kimelman, Jungloid Mining:
Helping to Navigate the API Jungle, in Proceedings of PLDI: ACM SIGPLAN Conference
on Programming Language Design and Implementation. 2005, Chicago, Illinois. p. 48-61.

61. Martin, Robert C., Agile Software Development, Principles, Patterns, and Practices. 2002,
Upper Saddle River, New Jersey: Prentice-Hall. 529 pp.

62. Mayer, Richard E., The Psychology of How Novices Learn Computer Programming. ACM
Computing Surveys, 1981. 13(1): p. 121-141.

63. Medynskiy, Yevgeniy, Mira Dontcheva, and Steven M. Drucker, Exploring Websites
through Contextual Facets, in Proceedings of CHI: ACM Conference on Human Factors in
Computing Systems. 2009, Boston, Massachusetts. p. 2013-2022.

64. Myers, Brad, Sun Young Park, Yoko Nakano, Greg Mueller, and Andrew Ko, How
Designers Design and Program Interactive Behaviors, in Proceedings of VL/HCC: IEEE
Symposium on Visual Languages and Human-Centric Computing. 2008. p. 177-184.

65. Niemeyer, Pat. BeanShell. http://www.beanshell.org

66. Novick, L., Analogical Transfer, Problem Similarity, and Expertise. Journal of Experimental
Psychology, Learning, Memory, and Cognition, 1988. 13(3): p. 510-520.

67. O'Brien, Timothy M. Dead Time (...code, compile, wait, wait, wait, test, repeat). 2006
[cited 2010 November 17] http://www.oreillynet.com/onjava/blog/2006/03/
dead_time_code_compile_wait_wa.html

68. O'Hara, Kenton P. and Stephen J. Payne, The Effects of Operator Implementation Cost on
Planfulness of Problem Solving and Learning. Cognitive Psychology, 1998. 35(1): p. 34-70.

 101

69. Oney, Stephen and Brad Myers, FireCrystal: Understanding Interactive Behaviors in
Dynamic Web Pages, in Proceedings of VL/HCC: IEEE Symposium on Visual Languages
and Human-Centric Computing. 2009, Corvallis, Oregon. p. 105-108.

70. Ousterhout, John K., Scripting: Higher-Level Programming for the 21st Century. IEEE
Computer, 1998: p. 23-30.

71. Pirolli, Peter L. T., Information Foraging Theory. 2007, Oxford: Oxford University Press.

72. Reason, James, Human Error. 1990, Cambridge: Cambridge University Press.

73. Richardson, Leonard. Beautiful Soup.
http://www.crummy.com/software/BeautifulSoup

74. Rosson, Mary Beth and John M. Carroll, The Reuse of Uses in Smalltalk Programming.
TOCHI: ACM Transactions on Human-Compter Interaction, 1996. 3(3): p. 219-253.

75. Sahavechaphan, Naiyana and Kajal Claypool, XSnippet: Mining for Sample Code, in
Proceedings of OOPSLA: ACM SIGPLAN Symposium on Object-Oriented Programming
Systems, Languages, and Applications. 2006. p. 413-430.

76. Scaffidi, Christopher, Mary Shaw, and Brad A. Myers, Estimating the Numbers of End
Users and End User Programmers, in Proceedings of VL/HCC: IEEE Symposium on
Visual Languages and Human-Centric Computing. 2005, Dallas, Texas. p. 207-214.

77. Schrage, Michael, Serious Play: How the World's Best Companies Simulate to Innovate.
1999, Boston: Harvard Business School Press. 244 pp.

78. Silverstein, Craig, Hannes Marais, Monika Henzinger, and Michael Moricz, Analysis of
a Very Large Web Search Engine Query Log. ACM SIGIR Forum, 1999. 33(1): p. 6-12.

79. Stylos, Jeffrey and Brad A. Myers, Mica: A Web-Search Tool for Finding API Components
and Examples, in Proceedings of VL/HCC: IEEE Symposium on Visual Languages and
Human-Centric Computing. 2006, Brighton, United Kingdom. p. 195-202.

80. Teevan, Jaime, Edward Cutrell, Danyel Fisher, Steven M. Drucker, Gonzalo Ramos,
Paul André, and Chang Hu, Visual Snippets: Summarizing Web Pages for Search and
Revisitation, in Proceedings of CHI: ACM Conference on Human Factors in Computing
Systems. 2009, Boston, Massachusetts. p. 2023-2032.

 102

81. Thummalapenta, Suresh and Tao Xie, PARSEweb: A Programmer Assistant for Reusing
Open Source Code on the Web, in Proceedings of ASE: IEEE/ACM International
Conference on Automated Software Engineering. 2007, Atlanta, Georgia. p. 204-213.

82. Turkle, Sherry and Seymour Papert, Epistemological Pluralism: Styles and Voices within
the Computer Culture. Signs: Journal of Women in Culture and Society, 1990. 16(1).

83. Wing, Jeannette M, Computational Thinking, in Communications of the ACM. 2006. p. 33-35.

84. Wong, Jeffrey and Jason I. Hong, Marmite: Towards End-User Programming for the Web,
in Proceedings of VL/HCC: IEEE Symposium on Visual Languages and Human-Centric
Computing. 2007. p. 270-271.

85. Woodruff, Allison, Andrew Faulring, Ruth Rosenholtz, Julie Morrsion, and Peter
Pirolli, Using Thumbnails to Search the Web, in Proceedings of CHI: ACM Conference on
Human Factors in Computing Systems. 2001, Seattle, Washington. p. 198-205.

86. Yeh, Ron B., Andreas Paepcke, and Scott R. Klemmer, Iterative Design and Evaluation of
an Event Architecture for Pen-and-Paper Interfaces, in Proceedings of UIST: ACM
Symposium on User Interface Software and Technology. 2008, Monterey, California.

