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ABSTRACT 

The Web is fundamentally changing programming. The increased prevalence of online 

source code—shared in code repositories, documentation, blogs and forums—enables 

programmers to build applications opportunistically by iteratively searching for, modifying, 

and combining examples. These Web resources are a ubiquitous and essential part of 

programming: in one of our studies, programmers spent 19% of their time consuming 

relevant online information. But our development tools haven't yet embraced these changes. 

How do we leverage the latent opportunity of Web-based example code in the next 

generation of programming tools? 

This dissertation explores the roles that online resources play in creating software, 

making contributions in three areas. First, it presents a taxonomy of programmer Web usage. 

Programmers turn to the Web with a variety of goals: they learn new skills, transfer 

knowledge to new domains, and delegate their memory to the Web. Using our taxonomy, we 

suggest opportunities for tool support of programmer Web usage. 

 Second, this thesis contributes interaction techniques for lowering the cost of 

locating relevant example code on the Web. We created Blueprint, a task-specific search 

engine that embeds Web search inside the development environment. A laboratory study 

and large-scale deployment of Blueprint found that it enables participants to write 

significantly better code and find example code significantly faster than with a standard Web 

browser and search engine, and may cause a fundamental shift in how and when 

programmers search the Web. 
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Finally, this thesis contributes interaction techniques for helping programmers 

understand examples. Efficient understanding and effective adaptation of examples hinges on 

the programmer's ability to quickly identify a small number of relevant lines interleaved 

among a larger body of boilerplate code. By augmenting the code authoring experience with 

execution visualization and linking of related lines, programmers can understand examples 

significantly faster. 
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CHAPTER 1 INTRODUCTION 

The Web is fundamentally changing programming [44, 79]. The increased prevalence of 

online source code—shared in code repositories, documentation, blogs and forums [1, 2, 24, 

71]—enables programmers to opportunistically build applications by iteratively searching 

for, modifying, and combining examples [19, 40]. Consider Jenny, a programmer we 

observed in the lab. At one point during the programming process, she exclaimed “Good 

grief, I don’t even remember the syntax for forms!” Less than a minute after this outburst, she 

had found an example of an HTML form online, successfully integrated it into her own code, 

adapted it for her needs, and moved onto a new task. As she continued to work, she 

frequently interleaved foraging for information on the Web, learning from that information, 

and authoring code. Over the course of two hours, she turned to the Web for help 27 times, 

accounting for 28% of the total time she programming. 

Reliance on the Web for instructive examples is a key part of what we call 

opportunistic programming. This approach emphasizes speed and ease of development over 

code robustness and maintainability [19, 40]. Programmers engage in opportunistic 
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programming to prototype, ideate, and discover—to address questions best answered by 

creating a piece of functional software. This type of programming is widespread, performed 

by novices and experts alike: it happens when designers build functional prototypes to 

explore ideas, when scientists write code to control laboratory experiments, when 

entrepreneurs assemble complex spreadsheets to better understand how their business is 

operating, and when professionals adopt agile development methods to build applications 

quickly [19, 61, 64, 76].  

1.1 THESIS CONTRIBUTIONS 

This dissertation provides an understanding of how programmers use online resources to 

support an opportunistic approach to development. Specifically, it offers contributions in 

three areas: 

1. A taxonomy of programmer Web usage — Programmers turn to the Web with a variety 

of goals: they learn new skills, transfer knowledge to new domains, and delegate their 

memory to the Web. Using this taxonomy, we suggest opportunities for tool support 

of programmer Web usage. 

2. Interaction techniques for lowering the cost of locating relevant example code —

Embedding a task-specific search engine in the development environment can 

significantly reduce the cost of finding information and thus enable programmers to 

write better code more easily. Moreover, lowering the cost of search can 

fundamentally change how programmers approach routine tasks. 

3. Interaction techniques for helping programmers understand examples — Efficient 

understanding and effective adaptation of examples hinges on the programmer's 
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ability to quickly identify a small number of relevant lines interleaved among a larger 

body of boilerplate code. By augmenting the code authoring experience with 

execution visualization and linking of related lines, programmers can understand 

examples significantly faster. 

1.2 THE PROGRAMMER AS A KNOWLEDGE WORKER 

The Web is changing many types of knowledge work [18]. Going forward, Web resources are 

likely to play an increasingly important role in a broad range of problem solving domains. 

This dissertation studies programmers as an exemplar form of knowledge worker.  

Moreover, the ability to think computationally is becoming an important skill in 

many types of knowledge work [83]. Scaffidi, Shaw, and Myers estimate that in 2012 there 

will be 13 million people in the USA that describe themselves as “programmers” [76]. It 

seems likely that several times that number will program to some extent. There is significant 

value in providing better tool support for this nascent population. 

By using programming as a “petri dish,” we endeavor to contribute broadly 

applicable principles that further our understanding of knowledge work on the Web. 

1.3 SOLUTION OVERVIEW AND DISSERTATION ROADMAP 

We begin by reviewing related work (Chapter 2). The remainder of the thesis is divided into 

two parts: empirical work that aims to understand how and why programmers use the Web, 

and tool building that aims to support and amplify the role that Web-based example code 

plays in the development process. 
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1.3.1 UNDERSTANDING WEB USE DURING OPPORTUNISTIC PROGRAMMING 

We conducted three studies to better understand opportunistic programming, and 

specifically, the role that the Web plays in this approach. We began by conducting fieldwork 

with exhibit designers at the Exploratorium Museum in San Francisco, California (Chapter 

3). Designers routinely faced the “build or borrow” question [13]: build a piece of 

functionality from scratch, or locate and adapt existing systems? Designers showed a distinct 

preference for bricolage, often combining and tailoring many off-the-shelf components in 

Rube-Goldberg-esque systems rather than building from scratch [39, 55, 59, 82, 84]. 

After completing our fieldwork, we studied opportunistic development in the lab 

(§4.1). We observed 20 programmers as they each spent 2.5 hours building a Web-based 

chat room application. All participants used online resources extensively, accounting for 

19% of the time they spent programming. More specifically, programmers leveraged online 

resources with a range of goals: They engaged in just-in-time learning of new skills and 

approaches, clarified and extended their existing knowledge, and reminded themselves of 

details deemed not worth remembering. 

Does programmers’ use of the Web “in the wild” have the same range of goals, or is 

this result an artifact of the particular lab setting? (Perhaps, for example, the performance 

pressure of being observed encouraged learning over trial-and-error experimentation.) To 

answer this, a second study (§4.2) analyzed one month of queries to an online programming 

portal, examining the lexical structure of queries, types of refinements made, and classes of 

result pages visited. These logs also exhibited traits that suggest the Web is being used for 

learning and reminding. 
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The results from these studies contribute to a theory of online resource usage in 

programming, and suggest opportunities for tools to facilitate online knowledge work. 

1.3.2 TOOL SUPPORT FOR EXAMPLE-CENTRIC PROGRAMMING 

Despite the demonstrated importance of Web resources, current search tools are not 

designed to assist with programming tasks and are wholly separate from editing tools. 

Chapter 5 explores the hypothesis that embedding a task-specific search engine in the 

development environment can significantly reduce the cost of finding information and thus 

enable programmers to write better code more easily.  

We describe the design, implementation, and evaluation of Blueprint, a Web search 

interface integrated into the Adobe Flex Builder development environment that helps users 

locate example code. Blueprint automatically augments queries with code context, presents a 

code-centric view of search results, embeds the search experience into the editor, and retains a link 

between copied code and its source. A comparative laboratory study (§5.3) found that 

Blueprint enables participants to write significantly better code and find example code 

significantly faster than with a standard Web browser. 

Our laboratory study of Blueprint suggested that it helped programmers write code 

more quickly. But we also wondered: After programmers integrated an example-centric 

search tool into their daily practice, would they then approach the task of programming 

differently? A large-scale longitudinal deployment of Blueprint addressed this question. 

Chapter 6 details our one-and-a-half- year deployment, focusing specifically on a 

comparative analysis of the first three months of log data from approximately 2,024 users. 

With Blueprint, programmers use search more frequently, and for a broader range of tasks. 



 

  6 

Improved Web search tools like Blueprint enable programmers to quickly locate 

relevant examples. However, existing code editors offer little support for helping users 

understand examples. Chapter 7 proposes that adapting an example quickly and accurately 

hinges on the programmer's ability to quickly identify a small number of relevant lines 

interleaved among a larger body of boilerplate code. This insight is manifest in Rehearse, a 

code editing environment with two unique features: First, Rehearse links program execution 

to source code by highlighting each line of code as it is executed. This enables programmers 

to quickly determine which lines of code are involved in producing a particular interaction. 

Second, after a programmer has found a single line applicable to her task, Rehearse 

automatically identifies other lines that are also likely to be relevant. In a controlled 

experiment, participants using Rehearse adapted example code significantly faster than those 

using an identical editor without these features. 

This thesis concludes with directions for future research (Chapter 8). Specifically, it 

suggests a number of empirical questions aimed at gaining a more complete picture of 

knowledge work on the Web. It also examines the issue of tool support for opportunistic 

programming more broadly, suggesting a number of directions for research outside the 

domain of example-centric programming. 

1.4 STATEMENT ON MULTIPLE AUTHORSHIP AND PRIOR PUBLICATIONS 

The research presented in this dissertation was completed with the help of many talented 

individuals. While I initiated and led the projects described here, I want to acknowledge all 

of my collaborators. Without them, this research could not have been realized. Specifically, 

the fieldwork presented in Chapter 2 was completed with the help of Indrajit Khare, and was 
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supported by William Meyer from the Exploratorium. Philip Guo and Joel Lewenstein 

contributed heavily to the empirical work presented in Chapter 4 and Marcos Weskamp and 

Iván Cavero Belaunde were instrumental in designing and deploying Blueprint at large scale. 

Vignan Pattamatta, Ben Hsieh, and William Choi all contributed to Rehearse. Finally, my 

advisors Mira Dontcheva and Scott R. Klemmer played a very important role in all of the 

research presented in this dissertation. 

This dissertation is partially based on papers published previously in ACM 

conference proceedings and IEEE publications. I am the primary author on all of these 

publications. Specifically, the studies presented in Chapter 4 were published at CHI 2009 

[11], and the Blueprint system was published at CHI 2010 [12]. Background on 

Opportunistic Programming was published in IEEE Software [10]. A paper describing 

Rehearse (Chapter 7) is under submission at the time of publication of this dissertation. 
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CHAPTER 2 RELATED WORK 

Assimilating knowledge is a key part of the programming process [25, 62]. For example, 

when adding functionality to an existing system, programmers must first understand how 

relevant parts of the existing system work, and how new libraries or frameworks will interact 

(Chapter 4). Similarly, when debugging, programmers must reconcile opaque information 

about execution state with an often incomplete understanding of how the code works [51]. 

Ever since Grace Hopper and her colleagues created the first compiler [46], programmers 

have been relying on tools to help manage this knowledge work. 

This chapter first explores the barriers that programmers face when trying to 

assimilate knowledge. We then look at how examples can play a role in overcoming these 

barriers. Examples aid in analogical reasoning, and allow people to avoid “re-inventing the 

wheel” by copying prior successful actions. Finally, we survey existing tools for helping 

programmers leverage examples. 
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2.1 BARRIERS IN PROGRAMMING 

Ko et al. observed novice programmers for a semester as they learned to use Visual Basic 

.NET [50]. The researchers classified all occurrences of insurmountable barriers, defined as 

problems that could only be overcome by turning to external resources. They identified six 

classes of barriers. Below are the six barriers, each with an example of how the barrier might 

be stated by a programmer: 

Design — I don’t know what I want the computer to do. 

Selection — I think I know what I want the computer to do, but I don’t know what to 
use. 

Coordination — I think I know what things to use, but I don’t know how to make 
them work together. 

Use — I think I know what to use, but I don’t know how to use it. 

Understanding —I thought I knew how to do this, but it didn’t do what I expected. 

Information —I think I know why it didn’t do what I expected, but I don’t know how 
to check. 

2.2 ROLE OF THE WEB IN OVERCOMING BARRIERS 

Stylos and Myers offer evidence that the Web is being used to overcome many of these 

barriers [79]. Specifically, general-purpose Web search is frequently used to enumerate 

possible libraries when dealing with a “Selection” barrier. Once programmers have decided 

on a library, they often encounter “use” and “understanding” barriers. In these situations, 

programmers find examples useful. Unfortunately, official documentation rarely contains 

examples, and so programmers again turn to Web search to find third-party example code. 

Hoffmann et al. provide further support for the import of the Web in overcoming barriers 

[44]. They classified Web search sessions about Java programming into 11 search goals (e.g., 
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beginner tutorials, APIs, and language syntax). They found that 34% were seeking API 

documentation (likely “Selection” or “Use” barriers) and 21% were seeking troubleshooting 

information (likely “Understanding” or “Information” barriers).  

The Web is an important tool in overcoming barriers during programming. A goal of 

this dissertation is to inform the design of better tools by providing a richer picture of how 

and why programmers leverage Web content. 

2.3 EXAMPLE-CENTRIC DEVELOPMENT 

When programmers turn to online resources, they exhibit a strong preference for example 

code over written descriptions of how to do a task [44, 79]. Why might this be? Examples 

play an important role in analogical reasoning [32]: it is much more efficient to adapt 

someone else’s successful solution than it is to start from scratch [66]. 

Because examples support creation, many programmers make examples a central 

part of their development practice. In a recent study of programmers learning to use a new 

UI toolkit, over one-third of participants’ code consisted of modified versions of examples 

distributed with the toolkit [86]. In our studies (Chapter 4), we observed that programmers 

frequently compared multiple similar examples during a single task. The use of comparison 

has been shown to help people extract high-level principles [33]. As Gentner writes, 

“comparison processes can reveal common structure … even early in learning when neither 

example is fully understood.” [31]. 

Examples may also help people avoid mistakes. Psychologists divide human 

performance into three levels: skill-based (e.g., walking), rule-based (e.g., navigating to 

another office in a well-known building), and knowledge-based performance (e.g., planning a 
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route to a place one has never been) [72]. We suggest that making examples a central part of 

their programming practice allows developers to engage in rule-based performance more 

often regardless of whether or not they are experts with the tools they are using. Broadly 

speaking, the rule they follow to accomplish the goal of “implement functionality foo” is: 1.) 

search for code that does foo; 2.) evaluate quality of found code; 3.) copy code into project; 

4.) modify as necessary; 5.) test code. Because the individuals doing opportunistic 

programming are programmers, it is easy for them to come up with the high-level goals, and 

copy-and-paste programming gives them a rule by which to meet those goals, regardless of 

familiarity with existing tools. 

Effecting support for example-centric development requires two things. First, there 

must be a source of relevant examples. Second, there must be a search interface that makes 

specifying queries and evaluating results efficient.  

2.3.1 SOURCES OF EXAMPLE CODE 

Several systems use data-mining techniques to locate or synthesize example code [75, 81]. 

XSnippet uses the current programming context of Java code (e.g., types of methods and 

variables in scope) to automatically locate example code for instantiating objects [75]. 

Mandelin et al. show how to automatically synthesize a series of method calls in Java that will 

transform an object of one type into an object of another type, useful for navigating large, 

complex APIs[60]. A limitation of this approach is that the generated code lacks the 

comments, context, and explanatory prose found in tutorials. 

An alternative is to use regular Web pages (e.g., forums, blogs, and tutorials) as sources 

for example code. We believe using regular Web pages as sources for example code has two 
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major benefits: First, it may provide better examples. Code written for a tutorial is likely to 

contain better comments and be more general purpose than code extracted from an open 

source repository. Second, because these pages also contain text, programmers can use 

natural language queries and general-purpose search engines to find the code they are 

looking for. 

2.3.2 TASK-SPECIFIC SEARCH INTERFACES 

Increasing reliance on the Web for learning is happening in a wide variety of knowledge work 

domains. As a result, there has been recent interest in creating domain-specific search 

interfaces (e.g., [8, 43, 63, 80, 85]). The Blueprint system presented in Chapter 5 follows the 

template-based approach introduced by Dontcheva et al. [26, 27]. Displaying diverse results 

in a consistent format through templates enables users to rapidly browse and evaluate search 

results. 

There are research [9, 44, 79] and commercial [1-3] systems designed to improve 

search and code sharing for programmers. While these search engines are domain-specific 

(that is, they are for programming), they are designed to support a broad range of tasks (e.g., 

finding libraries, looking up the order of method parameters, etc.). We suggest that there 

might be benefit in designing a task-specific search interface oriented specifically towards 

finding example code. This introduces a trade-off: a task-specific interface can be highly 

optimized for a specific task, but will lose generality.  

Current domain-specific search engines for programmers are completely independent 

of the user’s development environment. What benefits might be realized by bringing search 

into the development environment? CodeTrail explores the benefits of integrating the Web 
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into the development environment by linking the Firefox browser and Eclipse IDE [34]. We 

suggest there may be benefits from going one step further by placing search directly inside the 

development environment. Again, this introduces a trade-off: such an integration will give up 

the rich interactions available in a complete, stand-alone Web browser in favor of a more 

closely-coupled interaction for a specific task. 

2.3.3 TOOLS FOR UNDERSTANDING EXAMPLES 

After a programmer locates helpful a example, she must then work to understand both the 

example code and the existing code in her project. To help with this task, many 

programming-by-demonstration (PBD) tools provide a visual link between source code and 

execution at runtime [22, 23, 54]. For example, Koala [58] and Vegemite [56], two PBD 

tools for the Web, highlight lines of script before they execute and highlight the effect on the 

output as they execute. Similar visualizations are often provided in visual languages like 

d.tools [38] and Looking Glass (the successor to Storytelling Alice) [37]. In all of these 

systems, only a few “lines” of the user’s code need to execute per second for the user’s 

application to be performant. In contrast, with general-purpose languages like Java, the user’s 

code often must execute at thousands of statements per second. Current visualization 

techniques do not adapt easily to this use case. 

An alternative to realtime visualization of execution is to record an execution history 

that can be browsed and filtered after execution completes. FireCrystal, for example, uses 

this technique to aid programmers in understanding and debugging JavaScript [69]. There 

are benefits and tradeoffs associated with both approaches. Offline browsing of execution 

history affords the programmer more time to explore an issue in-depth, but it necessarily 
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requires an extra step of locating the portion of the execution trace that is relevant. The 

Whyline system offers an effective approach for browsing and filtering these execution traces 

[51]. Whyline allows users to ask “why” and “why not” questions about program output, 

which are used to automatically filter the execution trace for relevant data.  
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CHAPTER 3 OPPORTUNISTIC PROGRAMMING 

Quickly hacking something together can provide both practical and learning benefits [40]. 

Novices and experts alike often work opportunistically [19]: professional programmers and 

designers prototype to explore and communicate ideas [40, 47], scientists program 

laboratory instruments, and entrepreneurs assemble complex spreadsheets to better 

understand their business [77]. Their diverse activities share an emphasis on speed and ease 

of development over robustness and maintainability. Often, the code is used for just hours, 

days, or weeks.  

This chapter introduces opportunistic programming by detailing key characteristics 

of this approach. Programmers exhibit a strong preference for working from examples over 

building from scratch. To facilitate this, they leverage the Web for both the examples 

themselves, and for the instructional content that helps them put the examples to use.  
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3.1 HACKING IN THE WILD: FIELDWORK WITH 
MUSEUM EXHIBIT DESIGNERS 

We first observed the practice of opportunistic programming while conducting fieldwork 

with exhibit designers at the Exploratorium Museum in San Francisco, California. The 

Exploratorium is a hands-on museum about science and art. All of the exhibits are developed 

in-house (see Figure 3.1), and the majority of these exhibits have interactive computational 

components. 

Exhibit designers are responsible for conceiving and implementing interactive 

exhibits that will convey a particular scientific phenomenon. Many of these exhibits require 

 
Figure 3.1: The Exploratorium Museum in San Francisco, California. All exhibits are created in-house. Exhibit 
designers are responsible for all phases of development: designing interactions, constructing physical 
components, and developing software. They are jacks-of-all-trades, their work environment (a,c) filled with 
computers, electronics equipment, and manuals for a diverse set of software. A typical exhibit (b) comprises 
many off-the-shelf components hooked together using high-level languages such as Adobe Flash. 
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custom software. For example, an exhibit on microscopy required exhibit designers to 

retrofit a research-grade microscope with a remote, kid-friendly interface. While designers 

must construct working exhibits, they have little responsibility for the long-term 

maintainability or robustness of an exhibit. (If an exhibit is successful, it is commercialized 

by a separate division of the museum and sold to other museums throughout the country.) 

As such, they focus on exploring many ideas as rapidly as possible over ensuring robustness 

and maintainability. 

3.2 OPPORTUNSTIC PROGRAMMING IN THE LAB 

To get a more fine-grained understanding of how people work opportunistically, we 

performed a lab study with 20 programmers. In this study, participants prototyped a Web-

based chat room using HTML, PHP, and JavaScript. We provided participants with five 

broad specifications, like “the chat room must support multiple concurrent users and update 

without full page reloads.” We report on this study in depth in Chapter 4; we offer a few high-

level results here to support our fieldwork findings and as motivation for the rest of the 

thesis. 

3.3 CHARACTERISTICS OF OPPORTUNISTIC PROGRAMMING 

This section presents characteristics of an opportunistic approach to programming. 

3.3.1 GLUE TOGETHER HIGH-LEVEL COMPONENTS THAT FIT THE TASK 

At the Exploratorium, we observed that designers selected self-contained building blocks in 

order to build systems largely by writing “glue” code. For example, a nature observation 

exhibit called “Out Quiet Yourself” teaches individuals how to walk quietly. In this exhibit, 
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museum visitors walk over a bed of gravel. During the walk, the total amount of sound 

produced is measured and displayed on a large screen. All of the sound processing necessary 

for this exhibit could have been completed in software using the same computer that 

displays the total. Instead, the exhibit designers chose to use a series of hardware audio 

compressors and mixers to do the majority of the processing. They only needed to write two 

pieces of glue code: a small Python script to calculate the sum, and a simple Adobe Flash 

interface to display that sum. 

We observed that participants were most successful at bricolage development when 

components were fully functioning systems by themselves. For example, we asked the 

designer of the “Out Quiet Yourself” exhibit why he chose to use specialized audio hardware 

instead of a software library. He explained that the hardware could be experimented with 

independently from the rest of the system, which made understanding and tweaking the 

system much easier.  

In contrast, a digital microscope exhibit contained an off-the-shelf controller that 

made it possible to adjust microscope settings (e.g., slide position and focus) 

programmatically. This controller was driven by a custom piece of C++ code written by a 

contractor several years ago, and could not be used without this software. When the remote 

control of the microscope malfunctioned, it was very difficult to debug. Was the problem 

with the controller itself (e.g., a dead motor) or was there a bug in the code? Answering such 

questions was difficult because components could not be used independently and no current 

employees understood the custom software. 

In general, gluing together fully-functioning systems helps reduce several of the 

barriers that less-experienced programmers face [50]: First, because whole systems are easy 
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to experiment with, programmers are able to more easily understand how the pieces work, 

and can immediately intuit how to use them. Second, because there is a clearly defined 

boundary between each piece, programmers avoid coordination barriers. There is exactly 

one way to connect the pieces, and it is easy to see what is happening at the connection 

point.  

Two important considerations when selecting components are the designer’s 

familiarity with the component and the component’s fitness to the designer’s task. We call 

this the familiarity/flexibility trade-off. What factors affect the relative weight of these 

considerations? At the Exploratorium and in our lab study, composition and reuse occurred 

at multiple scales, and a component’s scale played an important role in determining whether 

it would be used. Specifically, successful opportunistic programmers valued fitness over 

familiarity when selecting tools for large portions of the task. For example, an exhibit 

designer who was an excellent Python programmer chose to learn a new language 

(Max/MSP) to build an exhibit on sound because the new language was better suited to 

audio processing than Python.  

At smaller scales of composition, the familiarity/fitness trade-off shifts to favor the 

familiar. For example, when one participant in our lab study was asked if he knew of libraries 

to make AJAX calls (a particular programming paradigm used in the study) easier, he 

responded “yes… but I don’t understand how AJAX works at all… if I use one of those 

libraries and something breaks, I’ll have no idea how to fix it.” Only three participants in this 

study used external libraries for AJAX, and in all cases these individuals already had 

significant experience with those libraries. 



 

  20 

An alternate approach to gluing a system together from scratch using high-level 

components is to find and tailor an existing system that almost does the desired task. In our 

lab study, three individuals did this, and two of those failed to meet some of the 

specifications. Leveraging an existing system allowed them to make quick initial progress, but 

made the last mile difficult. For example, one participant built upon an existing content-

management system with a chat module that met all but two of the specifications. He spent 

20 minutes finding and 10 minutes installing the system, meeting the first three 

specifications faster than all other participants. However, it took him an additional 58 

minutes to meet one more specification (adding timestamps to messages), and he was 

unable to meet the final specification (adding a chat history) in the remaining hour. The 

other two participants who modified existing systems faced similar, though not as dramatic, 

frustrations. 

The distinction between reusing and tailoring an existing system is subtle but 

important. To reuse a system, the programmer only needs to understand how to use its 

interface; to tailor a system, the programmer needs to understand how it is built. The main 

challenge of tailoring an existing system is building a mental model [30] of its architecture. 

This can be difficult and time-consuming even in the best of circumstances. Even when the 

code is well documented, the programmer is familiar with the tools involved, and the authors 

of the original code are available for consultation, mental model formation can still take a 

considerable amount of time [52]. Large software is inherently complex, and trying to 

understand a system by looking at source code is like trying to understand a beach by looking 

at grains of sand one at a time. 
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3.3.2 LEVERAGE EXAMPLES TO ADD NEW FUNCTIONALITY VIA COPY-AND-PASTE 

Even when programmers build software from existing components, some glue code must be 

written to hook these pieces together. Participants would frequently write this glue code by 

iteratively searching for, copying, and modifying short blocks of example code (< 30 lines) 

with desired functionality. We call this approach example-centric programming.  

Example-centric programming is particularly beneficial when working in an 

unfamiliar domain: modifying examples is easier than writing the code by oneself. For 

example, the majority of participants in our lab study who were unfamiliar with the AJAX 

programming paradigm chose to copy-and-paste snippets of AJAX setup code rather than try 

to learn to write it from scratch.  

However, example-centric programmming is not simply for novices; several 

participants were expert PHP programmers and still employed this practice for some pieces 

of code, like the one shown in Figure 3.2. When one participant searched for and copied a 

piece of PHP code necessary to connect to a MySQL database, he commented that he had 

“probably written this block of code a hundred times.” Upon further questioning, he 

reported that he always wrote the code by looking at an example, even though he fully 

<?php 
$res = mysql_query("SELECT id, name FROM table"); 
 
while ($row = mysql_fetch_array($res)) { 
 echo "id: ".$row["id"]."<br>\n"; 
 echo "id: ".$row[0]."<br>\n"; 
 echo "name: ".$row["name"]."<br>\n"; 
 echo "name: ".$row[1]."<br>\n"; 
} 
?> 

Figure 3.2: A typical snippet of PHP code (querying a database and iterating through returned values) that 
nearly all lab study participants copied from examples found on the Web. 
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understood what it did. He claimed that it was “just easier” to copy-and-paste it than to 

memorize and write it from scratch. 

This observation opens up interesting questions on how programmers locate 

“promising” code. In opportunistic programming, we believe the primary source is through 

Web search. Indeed, in our laboratory study, participants used the Web a great deal: On 

average, each participant spent 19% of their programming time on the Web, spread out over 

18 distinct sessions.  

3.3.3 ITERATE RAPIDLY 

Successful opportunistic programmers in our lab study favored a short edit-debug cycle. 

Figure 3.3 presents an overview of the length of each participant’s edit-debug cycles. The 

graph shows that for the vast majority of subjects, 50% of the cycles were less than 30 

seconds in length, and for all subjects, 80% of the cycles were less than 5 minutes in length. 

Only 2 subjects had edit-debug cycles of longer than 30 minutes, and each only underwent 1 

such cycle. These times are much shorter than those commonly reported during traditional 

software engineering; in a 2006 O’Reilly technical blog article, a Java developer estimates 

that an average cycle takes 31 minutes and a short cycle takes 6.5 minutes [67]. 

We believe that frequent iteration is a necessary part of learning unfamiliar tools and 

understanding found code. Therefore, successful opportunistic programmers select tools 

that make iteration fast. For example, interpreted languages are preferred over compiled 

languages because they emphasize human productivity over code execution speed [70]. 

Recently, the commercial software development has begun to embrace this observation. As 
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just one datapoint, 63% of the code in Adobe's flagship photo management application, 

Lightroom 2.0, is written in a scripting language [29]. 

3.3.4 CONSIDER CODE IMPERMANENT 

Code written opportunistically is often used to ideate and explore the design space when 

prototyping — it is a kind of “breadth-first” programming where many ideas are thrown away 

early. Because much of the code they write opportunistically is thrown away, developers 

often consider code to be impermanent. This perception affects the way code is written in 

two important ways. 

First, programmers spend little time documenting and organizing code that is 

written opportunistically. Interestingly, this is typically the right decision. An exhibit 

designer at the Exploratorium remarked that it simply wasn’t worth his time to document 

 
Figure 3.3: Histogram of per-subject edit-debug cycle times in our laboratory study. Each bar represents one 
subject. Total number of edit-debug cycles for each subject are given by the black number on each bar, and 
bar length is normalized across subjects. A black line separates cycles of less than and greater than 5 minutes. 
Across all subjects, 80% of edit-debug cycles were less than 5 minutes in length. 
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code because “[he] ended up throwing so much away”. Instead, successful opportunistic 

programmers document their process. For example, one designer keeps a project notebook 

for each exhibit. In this notebook, he documents important knowledge gained through the 

design process, such as the strengths and weaknesses of a particular tool, or why a user 

interface was not successful. Reuse of code written opportunistically is rare. Another exhibit 

designer reported that the only time he reuses code is when “[he] wrote it for the last project 

[he] worked on… otherwise it is just too much trouble.” However, both designers reported 

that with the right kind of documentation, process reuse is both common and invaluable. 

Second, the perceived impermanence of code written opportunistically leads to 

what we call code satisficing. Programmers will often implement functionality in a sub-

optimal way during opportunistic development in order to maintain flow [21]. For example, 

a participant in our lab was attempting to implement a fixed-length queue using an array in 

order to store chat history. She was a novice PHP programmer, but a very experienced 

programmer overall. She took a guess at PHP array notation, and guessed wrong. Instead of 

looking up the notation, she decided to create ten global variables, one for each element of 

the “array”. She commented that “[she knew] there was a better way to do this” but “didn’t 

want to be interrupted”. Initially, it appeared she had made the right decision, as she was able 

to test the history functionality only seconds later. However, this led to problems down the 

road. She made a typographical error when implementing the dequeue operation that took 

her over ten minutes to debug and clearly broke her flow. As this example illustrates, code 

satisficing can be both good and bad. Successful opportunistic programmers are good at 

weighing the trade-offs between implementing something “right” and implementing 

something “quickly”.  
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3.3.5 FACE UNIQUE DEBUGGING CHALLENGES 

Opportunistic programming leads to unique debugging challenges. As mentioned above, 

programmers often glue together many disparate components. One consequence of this is 

that development often occurs in multiple languages. (E.g., a typical museum exhibit consists 

of a Flash user interface that controls several stepper motors by communicating with an 

Arduino microcontroller via TCP/IP code written in Python!) When projects employ a 

federation of languages, programmers often cannot make effective use of sophisticated 

debugging tools intended for a single language. Instead, they are forced to make state and 

control flow changes visible through mechanisms like print statements. During our 

laboratory study, we observed that people who were better at opportunistic programming 

would do things to make state visible while adding new functionality. For example, they 

would insert print statements preemptively “just in case” they had to debug later. Individuals 

who were less experienced would have to do this after a bug occurred, which was much more 

time consuming. Interestingly, the less experienced programmers spent a significant amount 

of time trying to determine if a block of code they had just written was even executing, let 

alone whether it was correct! 
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CHAPTER 4 UNDERSTANDING HOW 
PROGRAMMERS USE THE WEB 

This chapter presents the results of two studies that investigate how programmers leverage 

online resources. In the first study, we asked 20 programmers to rapidly prototype a Web 

application in the lab. In the second study, we conducted a quantitative analysis of a month-

long sample of Web query data to better understand if our results generalized to the real-

world. We employed this mixed-methods approach to gather data that is both contextually 

rich and authentic [16, 36]. 

4.1 STUDY 1: EXAMINING WEB USE IN THE LAB 

We conducted an exploratory study in our lab to understand how programmers leverage 

online resources, especially during opportunistic programming. 

4.1.1 METHOD 

20 Stanford University students (3 female), all proficient programmers, participated in a 2.5-

hour session. The participants (5 Ph.D., 4 Masters, 11 undergraduate) had an average of 8.3 
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1 11 7 4 6 5      
2 17 5 4 2 1      
3 13 7 5 5 2      
4 4 6 4 5 2      
5 15 6 7 6 5      
6 2 6 5 3 4      
7 7 5 4 4 4      
8 8 5 2 4 2      
9 5 7 2 5 6      

10 6 5 3 4 2      
11 13 4 5 5 5      
12 2 6 3 5 2      
13 6 7 4 5 2      
14 1 5 3 3 2      
15 8 5 2 3 2      
16 8 7 7 6 7      
17 15 7 2 7 2      
18 7 5 4 5 4      
19 13 5 5 4 5      
20 5 6 3 6 2      

 
Table 4.1: Demographic information on the 20 participants in our lab study. Experience is given in number of 
years; self-rated proficiency uses a Likert scale from 1 to 7, with 1 representing “not at all proficient” and 7 
representing “extremely proficient”. 
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years of programming experience; all except three had at least 4 years of experience. 

However, the participants had little professional experience: only one spent more than 1 year 

as a professional developer. 

When recruiting, we specified that participants should have basic knowledge of 

PHP, JavaScript, and the AJAX paradigm. However, 13 participants rated themselves as 

novices in at least one of the technologies involved. (Further demographic information is 

presented in Table 4.1) Participants were compensated with their choice of class research 

credit (where applicable) or a $99 Amazon.com gift certificate. 

The participants’ task was to prototype a Web chat room application using HTML, 

PHP, and JavaScript. They were asked to implement five specific features (listed in Figure 

4.1). Four of the features were fairly typical but the fifth (retaining a limited chat history) 

was more unusual. We introduced this feature so that participants would have to do some 

Chat Room Features: 

1. Users should be able to set their username on the chat room page 
(application does not need to support account management). [Username] 

2. Users should be able to post messages. [Post] 

3. The message list should update automatically without a complete page 
reload. [AJAX update] 

4. Each message should be shown with the username of the poster and a 
timestamp. [Timestamp] 

5. When users first open a page, they should see the last 10 messages sent in 
the chat room, and when the chat room updates, only the last 10 
messages should be seen. [History] 

Figure 4.1: List of chat room features that lab study participants were asked to implement. The first four 
features are fairly typical; the fifth, retaining a limited chat history, is more unique. 
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programming, even if they implemented other features by downloading an existing chat 

room application (3 participants did this). We instructed participants to think of the task as 

a hobby project, not as a school or work assignment. Participants were not given any 

additional guidance or constraints. 

We provided each participant with a working execution environment within 

Windows XP (Apache, MySQL, and a PHP interpreter) with a “Hello World” PHP 

application already running. They were also provided with several standard code authoring 

environments (Emacs, VIM, and Aptana, a full-featured IDE that provides syntax 

highlighting and code assistance for PHP, JavaScript and HTML) and allowed to install 

their own. Participants were allowed to bring any printed resources they typically used while 

 
Figure 4.2: Screenshot of one participant’s completed chat room. This participant met all of the specifications. 
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programming and were told that they were allowed to use any resources, including any code 

on the Internet and any code they had written in the past that they could access. 

Three researchers observed each participant; all took notes. During each session, one 

researcher asked open-ended questions such as “why did you choose to visit that Web site?” 

or “how are you going to go about tracking down the source of that error?” that encouraged 

think-aloud reflection at relevant points (in particular, whenever participants used the Web 

as a resource). Researchers compared notes after each session and at the end of the study to 

arrive at the qualitative conclusions. Audio and video screen capture were recorded for all 

participants and were later coded for the amount of time participants used the Web. 

 
Figure 4.3: Overview of when participants referenced the Web during the laboratory study. Subjects are 
sorted by total amount of time spent using the Web. Web use sessions are shown in light blue, and instances 
of Web search are shown as dark bars. 
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4.1.2 RESULTS 

The majority of participants met most or all of the chat room specifications: All but one met 

at least four of the five, and 75% met them all. (Figure 4.2 shows one participant’s finished 

chat room, which met all of the specifications.) All participants used the Web extensively 

(see Figure 4.3). On average, participants spent 19% of their programming time on the Web 

(25.5 of 135 minutes; σ = 15.1 minutes) in 18 distinct sessions (σ = 9.1). 

The lengths of Web use sessions resembles a power-law distribution (see Figure 

4.4). The shortest half (those less than 47 seconds) compose only 14% of the total time; the 

longest 10% compose 41% of the total time. This suggests that individuals are leveraging the 

Web to accomplish several different kinds of activities. Web usage also varied considerably 

between participants: The most-active Web user spent an order of magnitude more time 

online than the least active user. 

 
Figure 4.4: All 360 Web use sessions amongst the 20 participants in our lab study, sorted and plotted by 
decreasing length (in seconds). The left vertical bar represents the cutoff separating the 10% longest 
sessions, and the right bar the cutoff for 50% of sessions. The dotted line represents a hypothetical uniform 
distribution of session lengths. 
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4.1.2.1 Goals driving Web use 

Why do programmers go to the Web? At the long end of the spectrum, participants spent 

tens of minutes learning a new concept (e.g., by reading a tutorial on AJAX-style 

programming). On the short end, participants delegated their memory to the Web, spending 

tens of seconds to remind themselves of syntactic details of a concept they new well (e.g., by 

looking up the structure of a foreach loop). In between these two extremes, participants used 

the Web to clarify their existing knowledge (e.g., by viewing the source of an HTML form to 

understand the underlying structure). This section presents typical behaviors, anecdotes, 

and theoretical explanations for these three styles of online resource usage (see Table 4.2 for 

a summary). 

4.1.2.2 Just-in-time learning of new skills 

Participants routinely stated that they were using the Web to learn about unfamiliar 

technologies. These Web sessions typically started with searches used to locate tutorial Web 

sites. After selecting a tutorial, participants frequently used its source code as a scaffold for 

learning-by-doing. 

Searching for tutorials: Participants’ queries usually contained a natural-language 

description of a problem they were facing, often augmented with several keywords specifying 

technology they planned to use (e.g., “php” or “javascript”). For example, one participant 

unfamiliar with the AJAX paradigm performed the query “update web page without 

reloading php”. Query refinements were common for this type of Web use, often before the 

user clicked on any results. These refinements were usually driven by familiar, or newly 

learned, terms seen on the query result page: In the above example, the participant refined 

the query to “ajax update php” before clicking on any links. 
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Selecting a tutorial: Participants typically clicked several query result links, opening 

each in a new Web browser tab before evaluating the quality of any of them. After several 

pages were opened, participants would judge their quality by rapidly skimming. In particular, 

several participants reported using cosmetic features—e.g., prevalence of advertising on the 

Web page or whether code on the page was syntax-highlighted—to evaluate the quality of 

potential Web sites. When we asked one participant how she decided what Web pages are 

trustworthy, she explained, “I don’t want [the Web page] to say ‘free scripts!’, or ‘get your 

chat room now!’, or stuff like that. I don’t want that because I think it’s gonna be bad, and 

most developers don’t write like that … they don’t use that kind of language.” This assessing 

behavior is consistent with information scent theory, in that users decide which Web pages 

to explore by evaluating their surface-level features [71]. 

Using the tutorial: Once a participant found a tutorial that he believed would be 

useful, he would often immediately begin experimenting with its code samples (even before 

reading the prose). We believe this is because tutorials typically contain a great deal of prose, 

Web session goal Learning Clarification Reminder 

Reason for using Web Just-in-time learning of 
unfamiliar concepts 

Connect high-level 
knowledge to 

implementation details 

Substitute for 
memorization  

(e.g., language, syntax, or 
function usage lookup) 

Web session length Tens of minutes About 1 minute < 1 minute 
Starts with web search? Almost always Often Sometimes 

Search terms Natural language related to 
high-level task 

Mix of natural language 
and code, cross-language 

analogies 

Mostly code (e.g., function 
names, language 

keywords) 
Example search “ajax tutorial” “javascript thread” “mysql_fetch_array” 
Num. result clicks Usually several Fewer Usually zero or one 
Num. query refinements Usually several Fewer Usually zero 

Types of Web pages visited Tutorials, how-to articles API documentation, blog 
posts, articles 

API documentation, result 
snippets on search page 

Amount of code copied 
from Web 

Dozens of lines (e.g., from 
tutorial snippets) Several lines Varies 

Immediately test 
copied code? Yes Not usually, often trust 

snippets Varies 

Table 4.2: Summary of characteristics of three points on the spectrum of Web use goals. 
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which is time-consuming to read and understand. Subject 10 said, “I think it’s less expensive 

for me to just take the first [code I find] and see how helpful it is at … a very high level … as 

opposed to just reading all these descriptions and text.” 

Participants often began adapting code before completely understanding how it 

worked. One participant explained, “there’s some stuff in [this code] that I don’t really know 

what it’s doing, but I’ll just try it and see what happens.” He copied four lines into his project, 

immediately removed two of the four, changed variable names and values, and tested. The 

entire interaction took 90 seconds. This learning-by-doing approach has one of two 

outcomes: It either leads to deeper understanding, mitigating the need to read the tutorial’s 

prose, or it isolates challenging areas of the code, guiding a more focused reading of the 

tutorial’s prose. 

For programmers, what is the cognitive benefit of experimentation over reading? 

Results from cognitive modeling may shed light on this. Cox and Young developed two 

ACT-R models to simulate a human learning the interface for a central heating unit [20]. 

The first model was given “‘how-to-do-the-task’ instructions” and was able to carry out only 

those specific tasks from start to finish. The second model was given “‘how-the-device-works’ 

instructions,” (essentially a better mapping of desired states of the device to actions 

performed) and afterwards could thus complete a task from any starting point. When 

tutorials are used as an aid in the middle of the development process, the programmer is 

typically only interested in a small portion of the tutorial. Programmers therefore commonly 

pick up the tutorial’s task “in the middle”. We suggest that when participants experiment 

with code, it is precisely to learn these action/state mappings. 
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Approximately 1/3 of the code in participants’ projects was physically copied and 

pasted from the Web. This code came from many sources: while a participant may have 

copied a hundred lines of code altogether, he did so ten lines at a time. This approach of 

programming by example modification is consistent with Yeh et al.’s study of students 

learning to use a Java toolkit [86]. 

4.1.2.3 Clarification of existing knowledge 

There were many cases where participants had a high-level understanding of how to 

implement functionality, but did not know how to implement it in the specific programming 

language. They needed a piece of clarifying information to help map their schema to the 

particular situation. The scenario presented at the beginning of Chapter 1 is an example of 

this behavior: The participant had a general understanding of HTML forms, but did not 

know all of the required syntax. These clarifying activities are distinct from learning activities 

because participants can easily recognize and adapt the necessary code once they find it. 

Because of this, clarifying uses of the Web are significantly shorter than learning uses. 

Searching with synonyms: Participants often used Web search when they were 

unsure of exact terms. We observed that search works well for this task because synonyms of 

the correct programming terms often appear in online forums and blogs. For example, one 

participant used a JavaScript library that he had used in the past but “not very often,” to 

implement the AJAX portion of the task. He knew that AJAX worked by making requests to 

other pages, but he forgot the exact mechanism for accomplishing this in his chosen library 

(named Prototype). He searched for “prototype request”. The researchers asked, “Is ‘request’ 
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the thing that you know you’re looking for, the actual method call?” He replied, “I don’t 

know. I just know that it’s probably similar to that.” 

Clarification queries contained more programming-language-specific terms than 

learning ones. Often, however, these terms were not from the correct programming language! 

Participants often made what we call language analogies: For example, one participant said 

“Perl has [a function to format dates as strings], so PHP must as well”. Similarly, several 

participants searched for “javascript thread”. While JavaScript does not explicitly contain 

threads, it supports similar functionality through interval timers and callbacks. All 

participants who performed this search quickly arrived at an online forum or blog posting 

that pointed them to the correct function for setting periodic timers: setInterval. 

Testing copied code (or not): When participants copied code from the Web during 

clarification uses, it was often not immediately tested. Participants typically trusted code 

found on the Web, and indeed, it was typically correct. However, they would often make 

minor mistakes when adapting the code to their needs (e.g., forgetting to change all instances 

of a local variable name). Because they believed the code correct, they would then work on 

other functionality before testing. When they finally tested and encountered bugs, they 

would often erroneously assume that the error was in recently-written code, making such 

bugs more difficult to track down. 

Using the Web to debug: Participants also used the Web for clarification during 

debugging. Often, when a participant encountered a cryptic error message, he would 

immediately search for that exact error on the Web. For example, one participant received an 

error that read, “XML Filtering Predicate Operator Called on Incompatible Functions.” He 

mumbled, “What does that mean?” then followed the error alert to a line that contained 
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code previously copied from the Web. The code did not help him understand the meaning of 

the error, so he searched for the full text of the error. The first site he visited was a message 

board with a line saying “This is what you have:” followed by the exact code in question and 

another line saying “This is what you should have:” followed by a corrected line of code. 

With this information, the participant returned to his code and successfully fixed the bug 

without ever fully understanding the cause. 

4.1.2.4 Reminders about forgotten details 

Even when participants were familiar with a concept, they often did not remember low-level 

syntactic details. For example, one participant was adept at writing SQL queries, but unsure 

of the correct placement of a limit clause. Immediately after typing “ORDER BY respTime”, 

he went online and searched for “mysql order by”. He clicked on the second link, scrolled 

halfway down the page, and read a few lines. Within ten seconds he had switched back to his 

code and added “LIMIT 10” to the end of his query. In short, when participants used the 

Web for reminding about details, they knew exactly what information they were looking for, 

and often knew exactly on which page they intended to find it (e.g., official API 

documentation). 

Searching or browsing for reminders: When participants used the Web for 

learning and clarification, they almost always began by performing a Web search and then 

proceeded to view one or more results. In the case of reminders, sometimes participants 

would perform a search and view only the search result snippets without viewing any of the 

results pages. For example, when one participant forgot the exact name of the PHP function 

used to access the result of a database query. A Web search for “php fetch array” allowed him 
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to quickly retrieve this information (“mysql_fetch_array”) the exact name of the function 

simply by browsing the snippets in the results page (See Figure 4.5). Other times, 

participants would view a page without searching at all. (The Gantt chart in Figure 4.3 

contains many Web sessions that do not begin with a dark bar indicating a Web search.) This 

is because participants often kept select Web sites (such as official language documentation) 

open in browser tabs to use for reminders when necessary. 

The Web as an external memory aid: Several participants reported using the Web 

as an alternative to memorizing routinely-used snippets of code. One participant browsed to 

a page within PHP’s official documentation that contained six lines of code necessary to 

 
Figure 4.5: Example of how participants used Web search to remind themselves of forgotten low-level syntax. 
Here, the programmer forgot the exact name of the function used to access the result of a database query. 
Searching for “php fetch array” allowed him to quickly retrieve the exact name (highlighted) without visiting 
any additional Web pages.  
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connect and disconnect from a MySQL database. After he copied this code, a researcher 

asked him if he had copied it before. He responded, “[yes,] hundreds of times”, and went on 

to say that he never bothered to learn it because he “knew it would always be there.” We 

believe that in this way, programmers can effectively distribute their cognition [45], 

allowing them to devote more mental energy to higher-level tasks. 

4.2 STUDY 2: WEB SEARCH LOG ANALYSIS 

Do programmer’s Web query styles in the real world robustly vary with their goal, or are the 

results presented above an artifact of the particular lab setting? To investigate this, we 

 
Figure 4.6: Web query result interface for Adobe’s Community Help search portal. This portal is implemented 
using a Google Custom Search Engine, and displays results in a format nearly identical to general-purpose 
search engines such as Google.  
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analyzed Web query logs from 24,293 programmers making 101,289 queries about the 

Adobe Flex Web application development framework in July 2008. These queries came from 

the Community Search portal [5] on Adobe’s Developer Network Web site [6]. This portal is 

implemented using a Google Custom Search Engine [7], and indexes documentation, 

articles, blogs, and forums by Adobe and vetted third-party sources. It displays search results 

in a format nearly identical to general-purpose search engines such as Google (See Figure 

4.6). 

To cross-check the lab study against this real-world data set, we began our analysis by 

evaluating four hypotheses derived from those findings: 

H1: Learning sessions begin with natural language queries more often than 
reminding sessions. 

H2: Users more frequently refine queries without first viewing results when learning 
than when reminding. 

H3: Programmers are more likely to visit official API documentation in reminding 
sessions. 

H4: The majority of reminding sessions start with code-only queries. Additionally, 
code-only queries are least likely to be refined, and contain the fewest number of 
result clicks. 

4.2.1 METHOD 

We analyzed the data in three steps. First, we used IP addresses (24,293 total unique IPs) 

and timestamps to group queries (101,289 total) into sessions (69,955 total). A session was 

defined as a sequence of query and result-click events from the same IP address with no gaps 

longer than six minutes. (This definition is common in query log analysis, e.g., [78].) 

Second, we selected 300 of these sessions and analyzed them manually. We found it 

valuable to examine all of a user’s queries because doing so provided more contextual 
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information. We used unique IP addresses as a proxy for users, and randomly selected from 

among users with at least 10 sessions. 996 met this criteria; we selected 19. This IP-user 

mapping is close but not exact: a user may have searched from multiple IP addresses, and 

some IP addresses may map to multiple users. It seems unlikely, though, that conflating IPs 

and users would affect our analysis. 

These sessions were coded as one of learning, reminding, unsure, or misgrouped. 

(Because the query log data is voluminous but lacks contextual information, we did not use 

the clarifying midpoint in this analysis.) We coded a session as learning or reminding based on 

the amount of knowledge we believed the user had on the topic he was searching for, and as 

unsure if we could not tell. To judge the user’s knowledge, we used several heuristics: 

whether the query terms were specific or general (e.g., “radio button selection change” is a 

specific search indicative of reminding), contents of pages visited (e.g., a tutorial indicates 

learning), and whether the user appeared to be an expert (determined by looking at the user’s 

entire search history—someone who occasionally searches for advanced features is likely to 

be an expert.) We coded a session as misgrouped if it appeared to have multiple unrelated 

queries (potentially caused by a user performing unrelated searches in rapid succession, or by 

pollution from multiple users with the same IP address). 

Finally, we computed three properties about each search session: 

1. Query type—whether the query contained only code (terms specific to the 
Flex framework, such as class and function names), only natural language, or 
both. 

2. Query refinement method—between consecutive queries, whether search 
terms were generalized, specialized, otherwise reformulated, or changed 
completely. 
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3. Types of Web pages visited—each result click was classified as one of four page 
types: Adobe APIs, Adobe tutorials, tutorials/articles (by third-party authors), 
and forums.  

4.2.1.1 Determining query type 

We first split each query string into individual tokens using whitespace. Then we ran each 

token through three classifiers to determine if it was code (i.e., Flex-specific keywords and 

class/function names from the standard library). The first classifier checked if the token was 

a (case-insensitive) match for any classes in the Flex framework. The second checked if the 

token contained camelCase (a capital letter in the middle of the word), which was valuable 

because all member functions and variables in the Flex framework use camelCase. The third 

checked if the token contained a dot, colon, or ended with an open and closed parenthesis, all 

indicative of code. If none of these classifiers matched, we classified the token as a natural-

language word. 

4.2.1.2 Determining query refinement method 

We classified refinements into five types, roughly following the taxonomy of Lau and Horvitz 

[53]. A generalize refinement had a new search string with one of the following properties: it 

was a substring of the original, it contained a proper subset of the tokens in the original, or it 

split a single token into multiple tokens and left the rest unchanged. A specialize refinement 

had a new search string with one of the following properties: it was a superstring of the 

original, it added tokens to the original, or it combined several tokens from the original 

together into one and left the rest unchanged. A reformulate refinement had a new search 

string that contained some tokens in common with the original but was neither a 

generalization nor specialization. A new query had no tokens in common with the original. 
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Spelling refinements were any queries where spelling errors were corrected, as defined by 

Levenshtein distances between corresponding tokens all being less than 3. 

4.2.1.3 Determining Web page type 

We built regular expressions that matched sets of URLs that were all the same type. A few 

Web sites, such as the official Adobe Flex documentation and official tutorial pages, contain 

the majority of all visits (and can be described using just a few regular expressions). We 

sorted all 19,155 result click URLs by number of visits and classified the most frequently-

visited URLs first. With only 38 regular expressions, we were able to classify pages that 

accounted for 80% of all visits (10,909 pages). We did not hand-classify the rest of the pages 

because the cost of additional manual effort outweighed the potential marginal benefits. 

Result clicks for the remaining 8246 pages (20% of visits) were labeled as unclassified. 

4.2.2 RESULTS 

Out of 300 sessions, 20 appeared misgrouped, and we were unsure of the goal for 28. Of the 

remaining 252 sessions, 56 (22%) had learning traits and 196 (78%) reminding traits. An 

example of a session with reminding traits had a single query for “function as parameter” and 

a single result click on the first result, a language specification page. An example of a session 

with learning traits began with the query “preloader”, which was refined to “preloader in flex” 

and then “creating preloader in flex”, followed by a result click on a tutorial. 
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 Session type  
Type of first query Learning Reminding All hand-coded 
code only 0.21 0.56 0.48 
nat. lang. & code 0.29 0.10 0.14 
nat. lang. only 0.50* 0.34 0.38 
Total 1.00 1.00 1.00 

Table 4.3: For hand-coded sessions of each type, proportion of first queries of each type (252 total sessions). 
Statistically significant differences between columns are shown in bold, * entry means only significant at p < 0.05. 

Session type  Result click  
Web page type Learning Reminding All hand-coded 
Adobe APIs 0.10 0.31 0.23 
Adobe tutorials 0.35 0.42 0.40 
tutorials/articles 0.31 0.10 0.17 
forums 0.06 0.04 0.05 
unclassified 0.18 0.13 0.15 
Total 1.00 1.00 1.00 

Table 4.4: For queries in hand-coded sessions of each type, proportion of result clicks to Web sites of each 
type (401 total queries). Statistically significant differences between columns are shown in bold. 

Refinement type  
generalize new reformulate specialize spelling all 

0.44 0.61 0.51 0.39 0.14 0.48 

Table 4.5: For each refinement type, proportion of refinements of that type where programmers clicked on 
any links prior to the refinement (31,334 total refinements). 

query type  
Result click 
Web page type code 

nat. lang. 
& code nat. lang. All clicks 

Adobe APIs 0.38 0.16 0.10 0.23 
Adobe tutorials 0.31 0.33 0.39 0.34 
tutorials/articles 0.15 0.22 0.19 0.18 
forums 0.03 0.07 0.06 0.05 
unclassified 0.13 0.22 0.27 0.20 
Total 1.00 1.00 1.00 1.00 

Table 4.6: For queries of each type, proportion of result clicks leading programmer to Web pages of each type 
(107,343 total queries). Statistically significant differences between columns are shown in bold. 



 

  45 

 
 

We used the Mann-Whitney U test for determining statistical significance of 

differences in means and the chi-square test for determining differences in frequencies 

(proportions). Unless otherwise noted, all differences are statistically significant at p < 

0.001. 

H1: The first query was exclusively natural language in half of learning sessions, 

versus one third in reminding sessions (see Table 4.3). 

H2: Learning and reminding sessions do not have a significant difference in the 

proportion of queries with refinements before first viewing results. 

H3: Programmers were more likely to visit official API documentation in reminding 

sessions than in learning sessions (31% versus 10%, see Table 4.4).  

H4: Code-only queries accounted for 56% of all reminding queries (Table 4.3). 

Among all (including those not hand-coded) sessions, those beginning with code-only 

queries were refined less (μ = 0.34) than those starting with natural language and code 

(μ = 0.60) and natural language only (μ = 0.51). It appears that when programmers perform 

code-only queries, they know what they are looking for, and typically find it on the first 

search. 

After evaluating these hypotheses, we performed further quantitative analysis of the 

query logs. In this analysis, we focused on how queries were refined and the factors that 

correlated with types of pages visited. 
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4.2.2.1 Programmers rarely refine queries, but are good at it 

In this data set, users performed an average of 1.45 queries per session (the distribution of 

session lengths is shown in Figure 4.7). This is notably less than other reports, e.g., 2.02 [78]. 

There are a number of possible explanations for this: improvements in search algorithms, 

that programming as a domain is well-suited to search, that participants were skilled, or that 

users abandon specialized search tools like Community Help more quickly than they do 

general purpose search engines. 

Across all sessions and refinement types, 66% of queries after refinements have result 

clicks, which is significantly higher than the percentage of queries before refinements (48%) 

that have clicks. This contrast suggests that refining queries generally produces better results. 

When programmers refined a query to make it more specialized, they generally did so 

without first clicking through to a result (see Table 4.5). Presumably, this is because they 

 
Figure 4.7: How query types changed as queries were refined. In both graphs, each bar sums all ith queries 
over all sessions that contained an ith query (e.g., a session with three queries contributed to the sums in the 
first three bars). The graph on the left is a standard histogram; the graph on the right presents the same data, 
but with each bar’s height normalized to 100 to show changes in proportions as query refinements occurred. 
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assessed the result snippets and found them unsatisfactory. Programmers may also see little 

risk in “losing” a good result when specializing—if it was a good result for the initial query, it 

ought to be a good result for the more specialized one. This hypothesis is reinforced by the 

relatively high click rate before performing a completely new query (presumably on the same 

topic)—good results may be lost by completely changing the query, so programmers click 

any potentially valuable links first. Finally, almost no one clicks before making a spelling 

refinement, which makes sense because people mostly catch typos right away. 

Users began with code-only searches 48% of the time and natural language searches 

38% of the time (see Figure 4.7). Only 14% of the time was the first query mixed. The 

percent of mixed queries steadily increased to 42% by the eighth refinement, but the percent 

of queries containing only natural language stayed roughly constant throughout. 

4.2.2.2 Query type predicts types of pages visited 

There is quantitative support for the intuition that query type is indicative of goal (see Table 

4.6). Code-only searches, which one would expect to be largely reminding queries, are most 

likely to bring programmers to official Adobe API pages (38% versus 23% overall) and least 

likely to bring programmers to all other types of pages. Natural-language-only queries, which 

one would expect to be largely learning queries, are most likely to bring programmers to 

official Adobe tutorials (39% versus 34% overall). 

4.3 LIMITATIONS OF OUR FINDINGS 

One limitation of studying student programmers in the lab is that their behavior and 

experience may differ from the broader population of programmers. Our query log analysis, 

prior work (e.g., [44, 79]), and informal observation of online forums suggest that 
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programmers of all skill levels are indeed turning to the Web for help. An important area for 

future work will be to better understand how the behaviors of these populations differ. 

A limitation of the query log study is that it does not distinguish queries that were 

“opportunistic” from those that were not. It remains an open question whether there is a 

causal relationship between programming style and Web usage style. 

Finally, our studies do not consider any resources other than the Web, such as 

printed media, or one’s colleagues. (While we notified the lab participants that they could 

bring printed materials, none did.) This dissertation looks exclusively at Web usage; other 

researchers have similarly examined other information resources individually (e.g., Chong et 

al. examined collaboration between programmers during solo and pair programming [17]). 

Future work is needed to compare the trade-offs of these different information resources. 

4.4 FIVE KEY INSIGHTS AND IMPLICATIONS FOR TOOLS 

In this section, we present five insights distilled from our findings. For each insight, we 

suggest implications for the design of tools that better support programmers’ use of the Web. 

In the chapters that follow, we explore and evaluate these implications. 

Programmers deliberately choose not to remember complicated syntax. Instead, 

they use the Web as external memory that can be accessed as needed. This suggests that Web 

search should be integrated into the code editor in much the same way as identifier 

completion (e.g., Microsoft’s IntelliSense and Eclipse’s Code Assist). Another possible 

approach is to build upon ideas like keyword programming [57] to create authoring 

environments that allow the programmer to type “sloppy” commands which are 

automatically transformed into syntactically correct code using Web search. 
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Web search often serves as a “translator” when programmers don’t know the exact 

terminology or syntax. Using the Web, programmers can adapt existing knowledge by making 

analogies with programming languages, libraries and frameworks that they know well. The 

Web further allows programmers to make sense of cryptic errors and debugging messages. 

Future tools could proactively search the Web for the errors that occur during execution, 

compare code from search results to the user’s own code, and automatically locate possible 

sources of errors. 

Programmers are good at refining their queries, but need to do it rarely. Query 

refinement is most necessary when users are trying to adapt their existing knowledge to new 

programming languages, frameworks, or situations. This underscores the value of keeping 

users in the loop when building tools that search the Web automatically or semi-

automatically. In other cases, however, query refinements could be avoided by building tools 

that automatically augment programmers’ queries with contextual information, such as the 

programming language, frameworks or libraries in the project, or the types of variables in 

scope. 

Programmers use Web tutorials for just-in-time learning, gaining high-level 

conceptual knowledge when they need it. Tools may valuably encourage this practice by 

tightly coupling tutorial browsing and code authoring. One system that explores this 

direction is d.mix, which allows users to “sample” a Web site’s interface elements, yielding the 

API calls necessary to create them [39]. This code can then be modified inside a hosted 

sandbox. 

Programmers often delay testing code copied from the Web, especially when 

copying routine functionality. As a result, bugs introduced when adapting copied code are 
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often difficult to find. Tools could assist in the code adaptation process by, for example, 

highlighting all variable names and literals in any pasted code. Tools could also clearly 

demarcate regions of code that were copied from the Web and provide links back to the 

original source. 
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CHAPTER 5 BLUEPRINT: 
INTEGRATING WEB SEARCH INTO THE 
DEVELOPMENT ENVIRONMENT 

This chapter investigates whether a task-specific search engine integrated into existing 

programming environments can significantly reduce the cost of searching for relevant 

information, and thus change how programmers use search. Small performance 

improvements can cause categorical behavior changes that far exceed the benefits of 

decreased task completion time [35]. For example, slight changes in the efficiency of an 

interface for an 8-tile puzzle game (e.g., direct manipulation versus keyboard commands for 

moving a tile) have been show to influence how individuals plan higher-level tasks [68]. 

Similarly, individuals are 1.5 times more likely to prefer a search engine with a 250 

millisecond delay in returning results over one with a 2 second delay (when they are unaware 

that the difference between the two search engines is this delay) [14]. This effect exists even 

at seemingly imperceptible levels: introducing a 100 millisecond delay in presenting Web 
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s e a r c h  r e s u l t s  c a u s e s  a  0 . 2 %  d e c r e a s e  i n  d a i l y  s e a r c h e s  p e r  u s e r  [ 1 5 ] ,  w h i c h  r e p r e s e n t s  a  

s i g n i f i c a n t  l o s s  o f  r e v e n u e  f o r  m a j o r  c o m m e r c i a l  s e a r c h  e n g i n e s .   

W e  b e l i e v e  t h a t  r e d u c i n g  s e a r c h  c o s t  t h r o u g h  t o o l  i n t e g r a t i o n  m a y  i n c r e a s e  a n d  

c h a n g e  h o w  p r o g r a m m e r s  f i n d  a n d  u s e  e x a m p l e s .  T h e s e  i d e a s  a r e  m a n i f e s t  i n  Blueprint,  a  

W e b  s e a r c h  i n t e r f a c e  i n t e g r a t e d  i n t o  t h e  A d o b e  F l e x  B u i l d e r  d e v e l o p m e n t  e n v i r o n m e n t  t h a t  

h e l p s  u s e r s  l o c a t e  e x a m p l e  c o d e .  

T w o  i n s i g h t s  d r o v e  B l u e p r i n t ’ s  d e s i g n  ( s e e  Figure 5.1 a n d  Figure 5.2) .  F i r s t ,  

embedding search into the development environment a l l o w s  t h e  s e a r c h  e n g i n e  t o  l e v e r a g e  t h e  

u s e r s ’  c o n t e x t  ( e.g., p r o g r a m m i n g  l a n g u a g e s  a n d  f r a m e w o r k  v e r s i o n s  i n  u s e ) .  T h i s  l o w e r s  t h e  

 
Figure 5.1: The Blueprint plug-in for the Adobe Flex Builder development environment helps programmers 
locate example code. A hotkey places a search box (A) at the programmer’s cursor position. Search results (B) 
are example-centric; each result contains a brief textual description (C), the example code (D), and, when 
possible, a running example (E). The user’s search terms are highlighted (F), facilitating rapid scanning of the 
result set. Blueprint allows users to rate examples (G). 
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c o s t  o f  c o n s t r u c t i n g  a  g o o d  q u e r y ,  w h i c h  i m p r o v e s  r e s u l t  q u a l i t y .  S e c o n d ,  extracting code 

examples from Web pages and composing them in a consistent, code-centric search results view 

r e d u c e s  t h e  n e e d  t o  c l i c k  t h r o u g h  t o  W e b  p a g e s  t o  f i n d  e x a m p l e  c o d e .  T h i s  a l l o w s  u s e r s  t o  

e v a l u a t e  r e s u l t s  m u c h  m o r e  r a p i d l y  t h a n  w i t h  t r a d i t i o n a l  W e b  s e a r c h  i n t e r f a c e s ,  r e d u c i n g  t h e  

c o s t  o f  s e l e c t i n g  a  g o o d  r e s u l t .  

W e  f i r s t  e v a l u a t e d  B l u e p r i n t  t h r o u g h  a  c o m p a r a t i v e  l a b o r a t o r y  s t u d y  w i t h  2 0  

p a r t i c i p a n t s .  I n  t h e  l a b ,  p a r t i c i p a n t s  i n  t h e  B l u e p r i n t  c o n d i t i o n  f o u n d  a nd  a d a p t e d  e x a m p l e  

c o d e  s i g n i f i c a n t l y  f a s t e r  t h a n  t h o s e  i n  t h e  t r a d i t i o n a l  W e b  s e a r c h  c o n d i t i o n .  B l u e p r i n t  

p a r t i c i p a n t s  a l s o  w r o t e  s i g n i f i c a n t l y  b e t t e r  c o d e ,  p e r h a p s  b e c a u s e  t h e y  c o u l d  l o o k  a t  m a n y  

m o r e  e x a m p l e s  a n d  c h o o s e  a  b e t t e r  s t a r t i n g  p o i n t .  T o  b e t t e r  u nd e r s t a nd  h o w  B l u e p r i nt  

w o u l d  a f f e c t  t h e  w o r k f l o w  o f  r e a l - w o r l d  p r o g r a m m e r s ,  w e  d e p l o y e d  B l u e p r i n t  o n  t h e  A d o b e  

L a b s  W e b  s i t e ,  a n d  s t u d i e d  h o w  i t  w a s  u s e d  b y  t h o u s a n d s  o f  d e v e l o p e r s  o v e r  o n e  y e a r .  W e  

r e p o r t  o n  t h i s  d e p l o y m e n t  i n  C h a p t e r  6 .  

 
Figure 5.2: Example-centric programming with Blueprint. The user presses a hotkey to initiate a search; a 
search box appears at the cursor location (1). Searches are performed interactively as the user types; example 
code and running examples (when present) are shown immediately (2). The user browses examples with 
the keyboard or mouse, and presses Enter to paste an example into her project (3). Blueprint automatically 
adds a comment containing metadata that links the example to its source (4). 
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The remainder of this chapter proceeds as follows. We first present a scenario that 

describes the use of Blueprint and presents its interface. We then describe the 

implementation of Blueprint. Next, we detail the laboratory evaluation of Blueprint. We 

conclude by positioning Blueprint in a design space of tools that support example-centric 

development. 

5.1 SCENARIO: DEVELOPING WITH BLUEPRINT 

Blueprint is designed to help programmers with directed search tasks and allow them to 

easily remind themselves of forgotten details, and clarify existing knowledge. Let’s follow 

Jenny as she creates a Web application for visualizing power consumption.  

First, Jenny needs to retrieve power-usage data from a Web service. Although Jenny has 

written similar code previously, she can’t remember the exact code she needs. She does 

remember that one of the main classes involved began with “URL”. So, she types “URL” into 

her code and uses auto-complete to remember the “URLLoader” class. Although, she now 

knows the class name, Jenny still doesn’t know how to use it (Figure 5.2, step 1). With another 

hotkey, Jenny brings up the Blueprint search interface, which automatically starts searching for 

URLLoader (step 2). Blueprint augments Jenny’s query with the language and framework 

version she is using, and returns appropriate examples that show how to use a URLLoader. She 

scans through the first few examples and sees one that has all the pieces she needs (step 3). She 

selects the lines she wants to copy, presses Enter, and the code is pasted in her project. 

Blueprint augments the code with a machine- and human-readable comment that records the 

URL of the source and the date of copy (step 4). When Jenny opens this source file in the 

future, Blueprint will check this URL for changes to the source example (e.g., with a bug fix), 
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and will notify her if an update is available. Jenny runs the code in Flex’s debugger to inspect the 

XML data. 

Next, Jenny wants to explore different charting components to display power usage. 

She invokes Blueprint a second time and searches for “charting”. Jenny docks the Blueprint 

result window as a panel in her development environment so she can browse the results in a 

large, persistent view. When source pages provide a running example, Blueprint presents this 

example next to the source code. Eventually Jenny picks a line chart, copies the example code 

from the Blueprint panel into her project, and modifies it to bind the chart to the XML data.  

Finally, Jenny wants to change the color of the lines on the chart. She’s fairly confident 

that she knows how to do this, and types the necessary code by hand. To make sure she didn’t 

miss any necessary steps, she presses a hotkey to initiate a Blueprint search from one of the lines of 

code she just wrote. Blueprint automatically uses the contents of the current line as the initial 

query. Because terms in this line of code are common to many examples that customize charts, 

she quickly finds an example that matches what she is trying to do. She confirms her code is 

correct, and begins testing the application. After only a few minutes her prototype is complete. 

5.2 IMPLEMENTATION 

Blueprint comprises a client plug-in, which provides the user interface for searching and 

browsing results, and the Blueprint server, which executes searches for example code. Figure 

5.3 provides a visual system description. 
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5.2.1 CLIENT-SIDE PLUG-IN 

T h e  B l u e p r i n t  c l i e n t  i s  a  p l u g - i n  f o r  A d o b e  F l e x  B u i l d e r .  F l e x  B u i l d e r ,  i n  t u r n ,  i s  a  p l u g - i n  f o r  

t h e  E c l i p s e  D e v e l o p m e n t  E n v i r o n m e n t .  T h e  B l u e p r i n t  c l i e n t  p r o v i d e s  t h r e e  m a i n  p i e c e s  o f  

f u n c t i o n a l i t y .  F i r s t ,  i t  p r o v i d e s  a  u s e r  i n t e r f a c e  f o r  i n i t i a t i n g  q u e r i e s  a n d  d i s p l a y i n g  r e s u l t s .  

S e c o nd ,  i t  s e nd s  c o nt e x t u a l  i nf o r m a t i o n ( e.g., p r o g r a m m i n g  l a n g u a g e  a n d  f r a m e w o r k  

v e r s i o n )  w i t h  e a c h  u s e r  q u e r y  t o  t h e  s e r v e r .  T h i r d ,  i t  n o t i f i e s  t h e  u s e r  w h e n  t h e  W e b  o r i g i n  o f  

e x a m p l e s  t h e y  a d a p t e d  h a s  u p d a t e d  ( e.g., w h e n  a  b u g  i s  f i x e d ) .  A l l  c o m m u n i c a t i o n  b e t w e e n  

t h e  c l i e n t  a n d  s e r v e r  o c c u r s  o v e r  H T T P  u s i n g  t h e  J S O N  d a t a  f o r m a t .  

B l u e p r i n t ’ s  q u e r y  a n d  s e a r c h  r e s u l t s  i n t e r f a c e  i s  i m p l e m e n t e d  u s i n g  H T M L  a n d  

J a v a S c r i p t  t h a t  a r e  r e n d e r e d  b y  t h e  b r o w s e r  w i d g e t  p r o v i d e d  i n  E c l i p s e ’ s  U I  t o o l k i t .  S e a r c h  

r e s u l t s  a r e  r e n d e r e d  s e q u e n t i a l l y  i n  a  l i s t  b e l o w  t h e  q u e r y  b o x  ( Figure 5.1,  p a r t  a ) .  E a c h  

s e a r c h  r e s u l t  i n c l u d e s  t h e  s o u r c e  W e b  p a g e  t i t l e  ( b ) ,  a  h y p e r l i n k  t o  t h e  s o u r c e  W e b  p a g e ,  

E n g l i s h  d e s c r i p t i o n  o f  t h e  e x a m p l e  ( c ) ,  t h e  c o d e  e x a m p l e  ( d ) ,  a n d ,  i f  a v a i l a b l e ,  a  r u n n i n g  

e x a m p l e  ( e )  s h o w i n g  t h e  f u n c t i o n a l i t y  o f  t h e  c o d e .  A l l  e x a m p l e s  i n c l u d e  s y n t a x  h i g h l i g h t i n g  

( p r o d u c e d  b y  t h e  P y g m e n t s  [ 4 ]  l i b r a r y ) ,  a n d  u s e r s ’  s e a r c h  t e r m s  a r e  a l s o  h i g h l i g h t e d  

t h r o u g h o u t  t h e  c o d e  ( f ) .  U s e r s  c a n  n a v i g a t e  t h r o u g h  e x a m p l e s  u s i n g  t h e  T a b  k e y  a n d  

 
Figure 5.3: Architecture of the Blueprint system. The process of servicing a user’s query is shown on the left; 
the background task of parsing Web pages to extract examples is shown on the right. 
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copy/paste selections by pressing enter. Users can rate examples (g) and dock the Blueprint 

floating window as an Eclipse panel. Blueprint also allows users to follow hyperlinks to view 

search results in context, and maintains a browsing and search history.  

When users paste example code into a project, Blueprint inserts a Javadoc-like 

comment at the beginning. This comment tags the example code with its URL source, the 

insertion date and time, and the search terms used in the initial query. This comment aids the 

user in revisiting the source example at a later time if necessary.  

5.2.2 BLUEPRINT SERVER 

The Blueprint server executes queries for example code and returns examples to the client. 

To maximize speed, breadth, and ranking quality, the server leverages the Adobe Community 

Help search APIs, a Google Custom Search engine. This search engine indexes Adobe 

product-specific content from across the Web. When the Blueprint server receives a query, it 

first augments the query with the user’s context (e.g., programming language and framework 

version), which is sent along with the query by the client. Then the server sends the new 

augmented query to the search engine, which returns a set of URLs. Since Blueprint users are 

interested in code examples and not Web pages, the server retrieves the Web pages returned by 

the search engine and processes them to extract source code examples.  

Since processing each page requires on average 10 seconds (8 seconds to retrieve the 

page, 2 seconds to extract examples), we preprocess pages and cache extracted examples. 

When the search engine returns URLs that are not in the Blueprint cache, the URLs are 

added to the cache by a background process. (Note that the parsing process is easily 

parallelized at a per-Web-page level. We have found that retrieving and parsing 100 pages in 
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parallel works well on our infrastructure.) Code examples from those URLs are returned in 

future queries. 

Before deploying Blueprint, we pre-populated the cache with approximately 50,000 

URLs obtained from search engine query logs. To keep the cache current, Blueprint crawls 

the URLs in the cache as a background process. Since pages containing examples are 

relatively static, the Blueprint prototype re-crawls them weekly. As of November 2010, after 

1.5 years of use, the Blueprint cache includes 208,916 examples from 84,403 unique Web 

pages. 

Leveraging an existing commercial search engine to produce a candidate result set has 

a number of advantages over building a new search engine (e.g., [44, 79]). First, it is 

substantially more resource-efficient to implement, as keeping a document collection up to 

date is expensive. Second, generating high-quality search results from natural-language queries 

is a hard problem and a highly-optimized commercial search engine is likely to produce better 

results than a prototype search engine with a restricted domain. Finally, a general-purpose 

search engine surfaces examples from tutorials, blogs, and API pages. Examples found on such 

pages are more likely to be instructive than examples extracted from large source code 

repositories. 

5.2.3 EXTRACTING EXAMPLE CODE AND DESCRIPTIONS 

To extract source code from Web pages, Blueprint segments the page and classifies each 

segment as source code or other type of content. First, Blueprint uses the BeautifulSoup 

library [73] to transform HTML into proper XHTML, and then it divides the resulting 

hierarchical XHTML document into independent segments by examining block-level 
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elements. Blueprint uses 31 tags to define blocks; the most common are: P, DIV, PRE, and 

heading tags. It also extracts SCRIPT and OBJECT blocks as block-level elements, because 

running examples that show executing example code are usually contained within these tags. 

To find block-level elements, Blueprint performs a depth-first traversal of the document. 

When it reaches a leaf element, it backtracks to the nearest block-level ancestor and creates a 

segment. If the root of the tree is reached before finding a block-level element, the element 

immediately below the root is extracted as a segment. This algorithm keeps segments 

ordered exactly as they were in the original file. Finally, to more easily and reliably determine 

whether a segment contains code, Blueprint converts each segment to formatted plain text 

using w3m, a text-based Web browser. This conversion allows for classification of code based 

on its textual appearance to a user on a Web page and not based on its HTML structure.  

Blueprint stores the HTML and plain text versions of all segments in a database. On 

average, a Web page in our dataset contains 161 segments. However, 69% of these are less 

than 50 characters long (these are primarily created by navigational elements). Although 

this algorithm leads to a large number of non-source code segments, it correctly parses blocks 

of example code into single segments, which enables our classifiers to prune non-source code 

segments.  

One limitation of this extraction algorithm is that it assumes code examples on Web 

pages are independent and so it does not handle Web pages that provide several related code 

examples that should be considered in concert, such as tutorials that list several steps or offer 

several complementary alternatives. This limitation is not a large concern for reminder tasks 

(as described in §4.1.2.4), as programmers typically know exactly what code they are looking 
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for. However, it presents challenges when using Blueprint for learning tasks. This is discussed 

further in §5.3.3.1 below. 

5.2.3.1 Classifying example code 

Given a set of clean, separate segments, the most straightforward approach to classifying 

them as source code is to use a programming language parser and label segments that parse 

correctly as code. For Blueprint, this would require ActionScript and MXML parsers, 

because they are the two languages used by Adobe Flex. In practice, this approach yields 

many false negatives: segments that contain code but are not labeled as such. For example, 

code with line numbers or a typo will cause parsing to fail.  

An alternate approach is to specify heuristics based on features unique to code, such 

as curly braces, frequent use of language keywords, and lines that end with semi-colons [44]. 

This approach produces many fewer false negatives, but introduces false positives, such as 

paragraphs of text that discuss code. Such paragraphs usually describe other source code 

found on the page and are not useful on their own.  

To remove buggy code that appears in forums and blog post comments, we ignore all 

segments that follow a comment block (where a comment block is a block that includes the 

word “comment”) and all Web pages that include “group” or “forum” in the URL.  

We computed precision (MXML: 84%, AS: 91%) and recall (MXML: 90%, AS: 86%) on 

40 randomly sampled Web pages from a corpus of the 2000 most frequently visited Web pages 

from the Adobe Community Help Search Web site. We compared the examples extracted by 

Blueprint to the examples manually extracted by two researchers. (“Precision” measures the 

percentage of extracted blocks that are actually examples; “Recall” measures the percentage of 
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actual examples that are correctly extracted.) Precision was mainly affected by misclassifying 

source examples in other languages (e.g., HTML, JavaScript, and ColdFusion) as MXML or 

ActionScript. Recall differed among types of Web pages. API reference Web pages, which are 

often produced automatically, were much easier to parse than tutorial Web pages, which vary 

greatly in the types of examples they show.  

5.2.3.2 Extracting text and running examples 

In addition to extracting source code, Blueprint extracts English descriptions and, where 

possible, running examples for each code segment. Informal inspection of pages containing 

example code found that the text immediately preceding an example almost always 

described the example, and running examples almost always occurred after the example 

code.  

To build descriptions, Blueprint iteratively joins the segments immediately 

preceding the code until any of three conditions is met: 1.) we encounter another code 

segment, 2.) we encounter a segment indicative of a break in content (those generated by 

DIV, HR, or heading tags), or 3.) we reach a length threshold (currently 250 words). Using 

this strategy the English we extract is the correct example description roughly 83% of the 

time as compared to the descriptions manually extracted by two researchers. 

To find running examples, Blueprint analyzes the k segments following a code 

example. Because we are concerned with Flex, all examples occur as Flash SWF files. We 

search for references to SWF files in OBJECT and SCRIPT tags. In practice, we have found 

k = 3 works best; larger values resulted in erroneous content, such as Flash-based 

advertisements. 
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5.2.3.3 Keeping track of changes to examples 

Each time a page is crawled, Blueprint checks for updates to the examples (e.g., bug fixes). It 

performs an exhaustive, pairwise comparison of examples on the new and old pages using the 

diff tool. Pages typically contain fewer than ten examples. If an example on the new and old 

pages matches exactly, they are deemed the same. If a new example has more than two-thirds 

of its lines in common with an old example, it is recorded as changed. Otherwise, the new 

example is added to the repository. When an example is no longer available on the Web, we 

keep the cached versions but do not display it as part of search results. The database stores 

each example with a timestamp, and keeps all previous versions. These timestamps allow 

Blueprint to notify users when an example changes. 

5.3 EVALUATION: STUDYING BLUEPRINT IN THE LAB  

We conducted a comparative laboratory study with 20 participants to better understand 

how Blueprint affects the example-centric development process. The laboratory study 

evaluated three hypotheses: 

H1: Programmers using Blueprint will complete directed tasks more quickly than 
those who do not because they will find example code faster and bring it into their 
project sooner. 

H2: Code produced by programmers using Blueprint will have the same or higher 
quality as code written by example modification using traditional means. 

H3: Programmers who use Blueprint produce better designs on an exploratory 
design task than those using a Web browser for code search. 

5.3.1 METHOD 

We recruited twenty professional programmers through an internal company mailing list 

and compensated them with a $15 gift card. The participants had an average of 11.3 years of 
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professional experience. Fourteen reported at least one year of programming experience with 

Flex; twelve reported spending at least 25 hours a week programming in Flex. 

The participants were given an off-the-shelf installation of Flex Builder, pre-loaded 

with three project files. The participants in the control condition were provided with the 

Firefox Web browser; they were asked to use the Adobe Community Help Search engine to 

look for example code. Participants in the treatment condition were provided with 

Blueprint to search for code samples; they were not allowed to use a Web browser.  

Participants were first asked to complete a tutorial, which taught them about the 

search interface they had been assigned. After completing the tutorial, participants were 

given a directed task, and an exploratory task. Participants were told that they would be timed 

and that they should approach both tasks as though they are prototyping and not writing 

production-level code. Participants began each task with a project file that included a 

running application, and they were asked to add additional functionality.  

For the tutorial, participants were given a sample application that contained an 

HTML browsing component and three buttons that navigated the browser to three 

different Web sites. Participants received a written tutorial that guided them through adding 

fade effects to the buttons and adding a busy cursor. In the control condition, the 

participants were asked to use the Web browser to find sample code for both modifications. 

The tutorial described which search result would be best to follow and which lines of code 

to add to the sample application. In the treatment condition, the participants were asked to 

use Blueprint to find code samples.  

For the directed programming task, the participants were instructed to use the 

URLLoader class to retrieve text from a URL and place it in a text box. They were told that 
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they should complete the task as quickly as possible. In addition, the participants were told 

that the person to complete the task fastest would receive an additional gift card as a prize. 

Participants were given 10 minutes to complete this task. 

For the exploratory programming task, participants were instructed to use Flex 

Charting Components to visualize an array of provided data. The participants were 

instructed to make the best possible visualization. They were told that the results would be 

judged by an external designer and the best visualization would win an extra gift card. 

Participants were given 15 minutes to complete this task. 

To conclude the study, we asked the participants a few questions about their 

experience with the browsing and searching interface. 

5.3.2 RESULTS 

This section reports on the results of the comparative study, broken down by task. 

5.3.2.1 Directed task 

Nine out of ten Blueprint participants and eight out of ten control participants completed 

the directed task. Because not all participants completed the task and completion time may 

not be normally distributed, we report all significance tests using rank-based non-parametric 

statistical methods (Wilcoxon-Mann-Whitney test for rank sum difference and Spearman 

rank correlation). 

We ranked the participants by the time until they pasted the first example (See 

Figure 5.4). Participants using Blueprint pasted code for the first time after an average of 57 

seconds, versus 121 seconds for the control group. The rank-order difference in time to first 

paste was significant (p < 0.01). Among finishers, those using Blueprint finished after an 
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average of 346 seconds, compared to 479 seconds for the control. The rank-order difference 

for all participants in task completion time was not significant (p = 0.14). Participants’ first 

paste time correlates strongly with task completion time (rs = 0.52, p = 0.01). This suggests 

that lowering the time required to search for, selecting and copying examples will speed 

development. 

A professional software engineer external to the project rank-ordered the 

participants’ code. He judged quality by whether the code met the specifications, whether it 

included error handling, whether it contained extraneous statements, and overall style. 

Participants using Blueprint produced significantly higher-rated code (p = 0.02). We 

hypothesize this is because the example-centric result view in Blueprint makes it more likely 

that users will choose a good starting example. When searching for “URLLoader” using the 

Adobe Community Help search engine, the first result contains the best code. However, this 

result’s snippet did not convey that the page was likely to contain sample code. For this 

reason, we speculate that some control participants overlooked it. 

5.3.2.2 Exploratory task 

A professional designer rank-ordered the participants’ charts. To judge chart quality, he 

considered the appropriateness of chart type, whether or not all data was visualized, and 

 
Figure 5.4: Comparative laboratory study results. Each graph shows the relative rankings of participants. 
Participants who used Blueprint are shown as filled squares, those who used Community Help are shown as 
open squares. 
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aesthetics of the chart. The sum of ranks was smaller for participants using Blueprint (94 vs. 

116), but this result was not significant (p = 0.21). While a larger study may have found 

significance with the current implementation of Blueprint, we believe improvements to 

Blueprint’s interface (described below) would make Blueprint much more useful in 

exploratory tasks. 

5.3.2.3 Areas for improvement 

When asked “How likely would you be to install and use Blueprint in its current form?” 

participants responses averaged 5.1 on a 7-point Likert scale (1 = “not at all likely”, 

7 = “extremely likely”). Participants also provided several suggestions for improvement. 

The most common requests were for greater control over result ranking. Two users 

suggested that they should be able to rate (and thus affect the ranking of) examples. Three 

users expressed interest in being able to filter results on certain properties such as whether 

result has a running example, the type of page that the result was taken from (blog, tutorial, 

API documentation, etc.), and the presence of comments in the example. Three participants 

requested greater integration between Blueprint and other sources of data. For example, one 

participant suggested that all class names appearing in examples be linked to their API page. 

Finally, three participants requested maintaining a search history; one also suggested a 

browseable and searchable history of examples used. We implemented the first two 

suggestions before the field deployment. The third remains future work. 

5.3.3 DISCUSSION 

In addition to the participants’ explicit suggestions, we identified a number of shortcomings 

as we observed participants working. It is currently difficult to compare multiple examples 
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using Blueprint. Typically, only one example fits on the screen at a time. To show more 

examples simultaneously, one could use code-collapsing techniques to reduce each 

example’s length. Additionally, Blueprint could show all running examples from a result set 

in parallel. Finally, visual differencing tools might help users compare two examples.  

We assumed that users would only invoke Blueprint once per task. Thus, each time 

Blueprint is invoked, the search box and result area would be empty. Instead, we observed 

that users invoked Blueprint multiple times for a single task (e.g., when a task required several 

blocks of code to be copied to disparate locations). Results should be persistent, but it 

should be easier to clear the search box: when re-invoking Blueprint, the terms should be pre-

selected so that typing replaces them. 

5.3.3.1 Where Blueprint fails 

Blueprint does not work equally well for all tasks. In particular, Blueprint is not appropriate 

for many learning tasks (described in Chapter 4). For example, if a programmer wants to 

learn how to implement drag-and-drop in Flex, Blueprint would be cumbersome to use. 

Implementing drag-and-drop requires adding about three distinct blocks of code to different 

parts of one’s codebase, and all of these blocks must interact with each other. Code examples 

for these blocks don’t completely convey why each is necessary; explanatory prose makes this 

much more clear. Blueprint’s interface makes it difficult to see multiple examples at the same 

time, and eliminates much of the related explanatory prose. 
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5.4 DESIGN SPACE OF WEB TOOLS FOR PROGRAMMERS 

Blueprint represents one point in the design space of tools that support programmers as they 

use the Web (see Figure 5.5). We discuss Blueprint’s limitations in the context of this design 

space and suggest directions for future work. 

Task: At a high level, programming comprises: planning and design; 

implementation; and testing and debugging. Blueprint helps programmers find code that 

implements desired functionality. Other tasks could (and do) benefit from Web search [79], 

but are not easily completed with Blueprint’s interface. For example, to decipher a cryptic 

error message, one may want to use program output as the search query [42]. 

Expertise: Programmers vary in expertise with the tools they use (e.g., languages and 

libraries), and their tasks (e.g., implementing a piece of functionality). Because Blueprint 

presents code-centric results, programmers must have the expertise required to evaluate 

whether a result is appropriate.  

Time scale: We designed Blueprint to make small tasks faster by directly integrating 

search into the code editor. This removes the activation barrier of invoking a separate tool. 

While Blueprint can be docked to be persistent, for longer information tasks, the advantages 

of a richer browser will dominate the time savings of direct integration. 

Approach: Programmer Web use can include very directed search tasks as well as 

exploratory browsing tasks. Given its emphasis on search, the Blueprint prototype is best 

suited to directed tasks: a well-specified query can efficiently retrieve a desired result. It is 

possible to use Blueprint for exploratory tasks, such as browsing different types of charts, 
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however support for such tasks can be improved by incorporating traditional Web browser 

features such as tabbed browsing and search results sorting and filtering.  

Integration Required: Some examples can be directly copied. Others require 

significant modification to fit the current context. Because Blueprint inserts example code 

directly into the user’s project, it provides the most benefit when example code requires little 

modification. When a piece of code is part of a larger project, the programmer may need to 

read more of the context surrounding the code in order to understand how to adapt it. 

 
Figure 5.5: Design space of tools to aid programmers’ Web use. Blueprint is designed to address the portion 
of the space shown with a shaded background. 
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CHAPTER 6 LONGITUDINAL STUDY OF 
BLUEPRINT: DEPLOYMENT TO 2,024 USERS 

To better understand how Blueprint would affect the workflow of real-world programmers, 

we made Blueprint publicly available on the Adobe Labs Web site (see Figure 6.1), and 

logged its use. After three months, we conducted open-ended interviews with four frequent 

users. Three themes emerged. First, the interviewees felt that the benefits of consistent, 

example-centric results outweigh the drawbacks of missing context. Second, they claimed 

that Blueprint is symbiotic with existing IDE features. Third, they reported using Blueprint 

primarily to clarify existing knowledge and remind themselves of forgotten details. 

To understand whether these three themes applied broadly, we compared Blueprint’s 

query logs to logs from a traditional search interface. We tested three hypotheses: First, if 

additional context is not necessary, Blueprint queries should have a significantly lower click-

through rate. Second, if users are using Blueprint in concert with other IDE features, they are 

likely querying with code and more Blueprint search terms should contain correctly formatted 

code. Third, if Blueprint is used for reminders, Blueprint users should repeat queries more 
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f r e q u e n t l y  a c r o s s  s e s s i o n s .  E v i d e n c e  f o r  a l l  t h r e e  o f  t h e s e  h y p o t h e s e s  w a s  f o u n d  i n  t h e  l o g s ,  

i n d i c a t i ng  t h a t  u s e r s  a r e  s e a r c h i n g  d i f f e r e n t l y  w i t h  B l u e p r i n t  t h a n  w i t h  t r a d i t i o n a l  t o o l s .  

T h e s e  f i n d i n g s  s u g g e s t  t h a t  t a s k - s p e c i f i c  s e a r c h  i n t e r f a c e s  m a y  c a u s e  a  f u n d a m e n t a l  s h i f t  i n  

h o w  a n d  w h e n  i n d i v i d u a l s  s e a r c h  t h e  W e b .  

O v e r  t h e  c o u r s e  o f  t h e  d e p l o y m e n t ,  w e  p e r f o r m e d  b u g  f i x e s  a n d  m i n o r  d e s i g n  

i m p r o v e m e n t s  ( o f t e n  b a s e d  o n  u s e r  f e e d b a c k  t h r o u g h  t h e  A d o b e  L a b s  W e b  f o r u m ) ;  t h e  

m a i n  i n t e r a c t i o n  m o d e l  r e m a i n e d  c o n s t a n t  t h r o u g h o u t  t h e  s t u d y .  

A t  t h e  c o m p l e t i o n  o f  t h e  s t u d y ,  w e  c o n d u c t e d  3 0 - m i n u t e  i n t e r v i e w s  w i t h  f o u r  a c t i v e  

B l u e p r i n t  u s e r s  t o  u n d e r s t a n d  h o w  t h e y  i n t e g r a t e d  B l u e p r i n t  i n  t h e i r  w o r k f l o w s .  B a s e d  o n  

t h e  i n t e r v i e w s ,  w e  f o r m e d  t h r e e  h y p o t h e s e s ,  w h i c h  w e  t e s t e d  w i t h  t h e  B l u e p r i n t  u s a g e  l o g s .  

A f t e r  e v a l u a t i n g  t h e s e  h y p o t h e s e s ,  w e  p e r f o r m e d  f u r t h e r  e x p l o r a t o r y  a n a l y s i s  o f  t h e  l o g s .  T h i s  

a d d i t i o n a l  a n a l y s i s  p r o v i d e d  h i g h - l e v e l  i n s i g h t  a b o u t  c u r r e n t  u s e  t h a t  w e  b e l i e v e  w i l l  h e l p  

g u i d e  f u t u r e  w o r k  i n  c r e a t i n g  t a s k - s p e c i f i c  s e a r c h  i n t e r f a c e s .  

 
Figure 6.1: Screenshot of the Blueprint Web page on Adobe Labs. Blueprint was made publicly available on 
May 27, 2009. 
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6.1 INSIGHTS FROM INTERVIEWING ACTIVE USERS 

Our interviews with active users uncovered three broad insights about the Blueprint 

interface. To understand if these insights generalize, we distilled each insight into a testable 

hypothesis. The insights and hypotheses are presented here; the results of testing them are 

presented in the following section. 

6.1.1 THE BENEFITS OF CONSISTENT, EXAMPLE-CENTRIC RESULTS 
OUTWEIGH THE DRAWBACKS OF MISSING CONTEXT. 

A consistent view of results makes scanning the result set more efficient. However, in general, 

removing content from its context may make understanding the content more difficult. 

None of our interviewees found lack of context to be a problem when using Blueprint. One 

interviewee walked us through his strategy for finding the right result: “Highlighting [of the 

search term in the code] is the key. I scroll through the results quickly, looking for my search 

term. When I find code that has it, I can understand the code much faster than I could 

English.” We hypothesize that examining code to determine if a result is relevant has a 

smaller gulf of evaluation [48] than examining English. Presenting results in a consistent 

manner makes this process efficient. 

When users desire additional context for a Blueprint result, they can click through to 

the original source Web page. This Web page opens in the same window where Blueprint 

results are displayed. If additional context is rarely necessary, we expect a low click-through 

rate. 

H1: Blueprint will have a significantly lower click-through rate than 
seen in a standard search engine. 
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6.1.2 BLUEPRINT IS SYMBIOTIC WITH EXISTING IDE FEATURES 

Three interviewees reported using Blueprint as an “extension” to auto-complete. They use 

auto-complete as an index into a particular object’s functionality, and then use Blueprint to 

quickly understand how that functionality works. For example, auto-complete would help 

them select a particular “write” method to call on a File object, and Blueprint would then 

provide an example for how to call that method as well as related error handling code 

necessary to use the “write” method robustly. This suggests that embedding search into the 

development environment creates a symbiotic relationship with other features. Here, auto-

complete becomes more useful because further explanation of the auto-complete results is 

one keystroke away. We believe that this symbiotic relationship is another example of how 

integrating task-specific search into a user’s existing tools can lower search costs. 

Programmers in our lab study routinely search with code terms when using standard 

search engines (see Chapter 4). However, when these search terms are typed by hand, they 

frequently contain formatting inconsistencies (e.g., method names used as search terms are 

typed in all lowercase instead of camelCase). By contrast, when search terms come directly 

from a user’s code (e.g., generated by output from auto-complete), the search terms will be 

correctly formatted. If Blueprint is being used in a symbiotic manner with other code editing 

tools, we expect to see a large number of correctly formatted queries. 

H2: Blueprint search terms will contain correctly formatted code more 
often than search terms used with a standard search engine. 

6.1.3 BLUEPRINT IS USED HEAVILY FOR CLARIFYING EXISTING KNOWLEDGE 
AND REMINDING OF FORGOTTEN DETAILS. 

One interviewee stated that, using Blueprint, he could find what he needed “60 to 80 percent 

of the time without having to go to API docs.” He felt that Blueprint fell in the “mid-space 
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between needing to jump down into API docs when you don’t know what you’re doing at all 

and not needing help because you know exactly what you are doing.” Other interviewees 

echoed this sentiment. In general, they felt that Blueprint was most useful when they had 

some knowledge about how to complete the task at hand, but needed a piece of clarifying 

information. That is, Blueprint was most useful for the reminding and clarifying tasks 

described in the taxonomy from Chapter 4. 

In general, understanding a user’s search goal from query logs alone is not feasible—

there is simply not enough contextual information available [36]. However, if uses of 

Blueprint tend more toward reminding and clarifying existing knowledge than learning new 

skills, we expect that users will more commonly repeat queries they have performed in the 

past. 

H3: Users of Blueprint are more likely to repeat queries across sessions 
than users of a standard search engine. 

6.2 METHOD 

To evaluate these hypotheses, one needs a comparison point. Adobe’s Community Help 

search engine presents a standard Web search interface that is used by thousands of Flex 

programmers. Furthermore, Community Help uses the same Google Custom Search Engine 

that is part of Blueprint. In short, Blueprint and Community Help differ in their interaction 

model, but are similar in search algorithm, result domain, and user base.  

We randomly selected 5% of users who used the Community Help search engine over 

the same period as the Blueprint deployment. We analyzed all logs for these users. In both 

datasets, queries for individual users were grouped into sessions. A session was defined as a 

sequence of events from the same user with no gaps longer than six minutes (identical to the 



 

  75 

definition used in Chapter 4.) Common “accidental” searches were removed (e.g., empty or 

single-character searches, and identical searches occurring in rapid succession) in both 

datasets. 

We used the z-test for determining statistical significance of differences in means and 

the chi-square test for determining differences in rates. Unless otherwise noted, all 

differences are statistically significant at p < 0.01. 

6.3 RESULTS 

Blueprint was used by 2024 individuals during the 82 day deployment, with an average of 25 

new installations per day. Users made a total of 17012 queries, or an average of 8.4 queries 

per user. The 100 most active users made 1888 of these queries, or 18.8 queries per user.  

The Community Help query logs used for comparison comprised 13283 users 

performing 26036 queries, an average of 2.0 queries per user. 

H1: Blueprint will have a significantly lower click-through rate than 
seen in a standard search engine 

Blueprint users clicked through to source pages significantly less than Community Help 

users (µ = 0.38 versus 1.32). To be conservative: the mean of 0.38 for Blueprint is an over-

estimate. For technical reasons owing to the many permutations of platform, browser, and 

IDE versions, click-throughs were not logged for some users. For this reason, this analysis 

discarded all users with zero click-throughs. 
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H2: Blueprint search terms will contain correctly formatted code more 
often than search terms used with a standard search engine. 

To test this hypothesis, we used the occurrence of camelCase words as a proxy for code 

terms. The Flex framework’s coding conventions use camelCase words for both class and 

method names, and camelCase rarely occurs in English words. 

Significantly more Blueprint searches contained camelCase than Community Help: 

49.6% (8438 of 17012) versus 16.2% (4218 of 26036). The large number of camelCase 

words in Blueprint searches indicates that many searches are being generated directly from 

users’ code. This suggests that, as hypothesized, Blueprint is being used in a symbiotic way 

with other IDE features. The large number of camelCase queries in Blueprint searches also 

indicates that the majority of searches use precise code terms. This suggests that Blueprint is 

being used heavily for clarification and reminding, where the user has the knowledge 

necessary to select precise search terms.  

H3: Users of Blueprint are more likely to repeat queries across sessions 
than users of a standard search engine. 

Significantly more Blueprint search sessions contained queries that had been issued by the 

same user in an earlier session than for Community Help: 12.2% (962 of 7888 sessions) 

versus 7.8% (1601 of 20522 sessions). 

6.4 EXPLORATORY ANALYSIS 

To better understand how Blueprint was used, we performed additional exploratory analysis 

of the usage logs. We present our most interesting findings below. 
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6.4.1 USING BLUEPRINT AS A RESOURCE TO WRITE CODE BY HAND IS COMMON. 

A large percentage of sessions (76%) did not contain a copy-and-paste event. There are two 

possible reasons for this high number: First, as our interviewees reported, we believe 

Blueprint is commonly used to confirm that the user is on the right path – if they are, they 

have nothing to copy. Second, sometimes Blueprint’s results aren’t useful. (For technical 

reasons, copy-and-paste events were not logged on some platforms. The statistic presented 

here is only calculated amongst users were we could log this event. In this data set, there were 

858 sessions that contained copy-and-paste events out of a total of 3572 sessions.)  

6.4.2 PEOPLE SEARCH FOR SIMILAR THINGS USING BLUEPRINT AND COMMUNITY HELP, 
BUT THE FREQUENCIES ARE DIFFERENT. 

We examined the most common queries for Blueprint and Community Help and found that 

there was a large amount of overlap between the two sets: 10 common terms appeared in the 

top 20 queries of both sets. The relative frequencies, however, differed between sets. As one 

example, the query “Alert” was significantly more frequent in Blueprint than Community 

Help. It was 2.2 times more frequent, ranking 8th versus 34th.  

The initial result views for search “Alert” for both Blueprint and Community Help 

are shown in Figure 6.2. In the case of this particular search, we believe the difference in 

frequency is explained by the granularity of the task the user is completing. Namely, this task 

is small. When a user searches for “Alert,” he is likely seeking the one line of code necessary to 

display a pop-up alert window. In Blueprint, the desired line is immediately visible and 

highlighted; in Community Help, the user must click on the first result and scroll part way 

down the resulting page to find the code. Alerts are often used for debugging, where there are 

reasonable—but less optimal—alternative approaches (e.g., “trace” statements). It may be 
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t h e  c a s e  t h a t  B l u e p r i n t ’ s  l o w e r e d  s e a r c h  c o s t  c h a n g e s  u s e r  b e h a v i o r .  U s e r s  w h o  d o  n o t  h a v e  

B l u e p r i n t  m o r e  f r e q u e n t l y  s e t t l e  f o r  s u b - o p t i m a l  a p p r o a c h e s  b e c a u s e  o f  t h e  r e l a t i v e l y  h i g h e r  

c o s t  o f  t a k i n g  t h e  o p t i m a l  a p p r o a c h .  

6.4.3 BOTH INTERFACE MODALITIES ARE IMPORTANT 

U s e r s  c a n  i n t e r a c t  w i t h  b l u e p r i n t  e i t h e r  a s  a  p o p - u p  w i n d o w  o r  i n s i d e  a  d o c k e d  p a n e l .  T h e  

d e f a u l t  m o d a l i t y  i s  t h e  p o p - u p  w i n d o w .  U s e r s  m u s t  e x p l i c i t l y  d o c k  t h e  p o p - u p  i f  t h e y  w i s h  t o  

u s e  t h i s  i n t e r f a c e ,  b u t  m a y  s t a r t  s u b s e q u e n t  s e a r c h  s e s s i o n s  f r o m  t h e  d o c k e d  i n t e r f a c e  i f  i t  i s  

a l r e a d y  o p e n .  A m o n g  a l l  u s e r s ,  5 9 %  o f  s e s s i o n s  u s e d  o n l y  t h e  p o p - u p  i n t e r f a c e ,  9 %  u s e d  o n l y  

t h e  d o c k e d  i n t e r f a c e ,  a n d  3 2 %  u s e d  b o t h .  T h i s  s u g g e s t s  t h a t  p r o v i d i n g  b o t h  i n t e r f a c e s  i s  

i m p o r t a n t .  F u r t h e r m o r e  t h e  f a c t  t h a t  u s e r s  f r e q u e n t l y  s w i t c h e d  b e t w e e n  i n t e r f a c e s  m i d -

s e s s i o n  s u g g e s t s  t h a t  s o m e  t a s k s  a r e  m o r e  a p p r o p r i a t e  f o r  a  p a r t i c u l a r  i n t e r f a c e .  

 
Figure 6.2: Comparison of Blueprint (left) and Commmunity Help (right) search result interfaces for the query 
“Alert”. The desired information is immediately available in Blueprint; Community Help users must click the 
first result and scroll part way down the page to find the same information. 
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6.5 USER RETENTION  

Are early adopters of Blueprint still using it, or is Blueprint simply an interesting curiosity 

that users pick up, try a few times, and set aside? The controlled study presented above 

reports on usage over 3 months. After Blueprint had been available for 200 days, its user base 

had grown to 3253, with an average of 16.3 new users per day. During this time, the most 

active third of users (1084) searched with Blueprint over at least a 10-day span. The top 10% 

of users (325) queried Blueprint over at least a 59-day span, and the top 1% of users (33) 

queried Blueprint over at least a 151-day span. For legal reasons, we were unable to track 

users across re-installations of Flex Builder. So, if a user re-installed or upgraded Flex Builder, 

they were counted as a new user. As such, these numbers under-report actual retention.  

6.6 CONCLUSION 

To support programming by example modification, this chapter introduced a user interface 

for accessing online example code from within the development environment. It discussed the 

Blueprint client interface, which displays search results in an example-centric manner. The 

Blueprint server introduced a lightweight architecture for using a general-purpose search 

engine to create code-specific search results that include written descriptions and running 

examples. In evaluating Blueprint, we found that it enabled users to search for and select 

example code significantly faster than with traditional Web search tools. Log analysis from a 

large-scale deployment with 2,024 users suggested that task-specific search interfaces may 

cause a fundamental shift in how and when individuals search the Web. 
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CHAPTER 7 REHEARSE: HELPING 
PROGRAMMERS UNDERSTAND EXAMPLES 

 Instructive examples have long played a central role in programming practice [74], and Web 

search tools like Blueprint (Chapter 5) help programmers to locate high-quality examples. 

However, locating quality examples is just the first step in the example-use pipeline: with a 

potentially useful example in hand, a programmer must understand the example, and then 

adapt the example to her particular use case.  

Despite examples’ pervasiveness, current mainstream editing environments offer 

little specialized support for understanding and adapting examples. What interactions might 

assist programmers in using examples more effectively? While answering this question 

completely is beyond the scope of this thesis, this chapter presents initial work on developing 

interaction techniques that help programmers understand examples.  

Previous research suggests that programmers prefer examples that are complete, 

executable applications [74]. Examples in this form show relevant code in context, 

providing information about how it should be used. The downside of complete examples is 
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t h a t  t h e y  n e c e s s a r i l y  c o n t a i n  a  l a r g e  a m o u n t  o f  i r r e l e v a n t  “ b o i l e r p l a t e ”  c o d e  w i t h  r e l e v a n t  

l i n e s  i n t e r l e a v e d  t h r o u g h o u t .  T h e  m a i n  i n s i g h t  p r e s e n t e d  i n  t h i s  c h a p t e r  i s  t h a t  effective use of 

examples hinges on the programmer's ability to quickly identify a small number of relevant lines 

interleaved among a larger body of boilerplate code.  

T o  e x p l o r e  t h i s  i n s i g h t ,  w e  b u i l t  Rehearse,  w h i c h  i s  a n  e x t e n s i o n  o f  t h e  o p e n  s o u r c e  

P r o c e s s i n g  d e v e l o p m e n t  e n v i r o n m e n t  [ 2 8 ] .  P r o c e s s i n g  u s e s  a  v a r i a n t  o f  t h e  J a v a  

p r o g r a m m i n g  l a n g u a g e  a n d  i s  c o m p l e t e l y  i n t e r o p e r a b l e  w i t h  s t a n d a r d  J a v a  l i b r a r i e s .  

R e h e a r s e  e n a b l e s  t w o  i n t e r a c t i o n s  n o t  a v a i l a b l e  i n  P r o c e s s i n g .  F i r s t ,  R e h e a r s e  l i n k s  p r o g r a m  

e x e c u t i o n  t o  s o u r c e  c o d e  b y  h i g h l i g h t i n g  e a c h  l i n e  o f  c o d e  a s  i t  i s  e x e c u t e d  ( s e e  Figure 7.1) .  

T h i s  e n a b l e s  p r o g r a m m e r s  t o  q u i c k l y  d e t e r m i n e  w h i c h  l i n e s  o f  c o d e  a r e  i n v o l v e d  i n  

p r o d u c i n g  a  p a r t i c u l a r  i n t e r a c t i o n .  S e c o n d ,  a f t e r  a  p r o g r a m m e r  h a s  f o u n d  a  s i n g l e  l i n e  

a p p l i c a b l e  t o  h e r  t a s k ,  R e h e a r s e  a u t o m a t i c a l l y  i d e n t i f i e s  o t h e r  l i n e s  t h a t  a r e  a l s o  l i k e l y  t o  b e  

r e l a t e d  ( s e e  Figure 7.2) .  

 
Figure 7.1: The Rehearse development environment, visualizing the execution of an example application. The 
user interacts with the running application (A). Lines that have recently executed are highlighted in dark 
green (B). As execution progresses, lines executed less recently fade to light green (C). 
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We compared Rehearse to the unmodified Processing environment in the lab with 

12 participants. We found that by using these interactions participants were able to adapt 

example code significantly faster. 

7.1 OBSERVING EXAMPLE ADAPTATION 

To inform the design of Rehearse, we observed five individuals in the lab as they searched for, 

evaluated, and adapted example code. Five university students participated in an hour-long 

unpaid observation. All the participants had previous experience with Java; only one was 

familiar with Processing. 

We first asked participants to follow a standard tutorial on Processing’s Web site. 

Participants were then asked to perform two tasks: The first was to create an analog clock 

with numbers. We provided participants with two example applications: an analog clock 

without numbers and an application that drew text on a canvas. The second task was more 

open-ended. Participants were asked to create a custom paintbrush tool of their choice. We 

seeded them with ideas, such as “spray paintbrush” and “soft hair paintbrush.” Participants 

were provided with a broad example database, including a few with functionality that was 

directly relevant to the task (such as mouse press and mouse drag). 

In addition to the provided examples, participants were free to use any online 

resources. We encouraged participants to think aloud by asking open-ended questions as 

they worked. 
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7.1.1 OBSERVATIONS 

Participants routinely executed examples before inspecting the source code. For example, 

one participant opened an example and immediately stated, “I’m going to run this and figure 

out what it does.” We believe that this initial execution allowed participants to form a 

mental model of how the source code should be structured, which guided their subsequent 

inspection of the code itself. 

We found that when participants read source code, they were very good at 

identifying a single “seed” line relevant to their task. For example, they could rapidly identify 

the line of code that actually drew text to the canvas because it contained a string literal. 

However, it took them much longer to identify related lines, such as those that loaded and 

selected a font or set the drawing position. Often, they would fail to identify some relevant 

lines, which would lead to confusing bugs. In the provided example on drawing text, the line 

that set the font was in a setup function far away from the line that actually drew text. As a 

result, several participants did not see this line, and mistakenly assumed that there was a 

default font.  

After participants found a potential “seed” line, they would frequently make a small 

modification to that line and then re-execute the application. This modification was largely 

epistemic [49]: it wasn’t in support of the eventual adaptation they needed to make to achieve 

their goal. Instead, it served as a way to confirm that they were on the right path. We 

hypothesized that by providing a more efficient way to confirm that particular lines of code 

were linked to desired output behavior, we could increase the utility of this epistemic action. 
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7.2 REHEARSE 

Rehearse extends the Processing development environment [28] with two interactions 

designed to support understanding and adapting example code. 

7.2.1 EXECUTION HIGHLIGHTING 

During execution of the user’s program, Rehearse highlights each line of code as it is executed 

(Figure 7.1). The line currently executing is highlighted in dark green. As execution 

progresses, the highlighting slowly fades to light green, which gives the programmer an 

overview of which lines have executed most recently. Execution highlighting can be enabled 

or disabled using a toggle button in the toolbar. 

Execution highlighting directly links what is happening in the program’s output to 

the code responsible for that output. This link allows the programmer to use the running 

application as a query mechanism: to find code relevant to a particular interaction, the 

programmer simply performs that interaction. Because the visualization is produced in 

realtime, this makes it easy to answer questions such as “is the MouseDrag handler called 

only at the start of a mouse drag event, or continuously throughout the drag?”  

Execution highlighting can help programmers find some of the lines of code that are 

relevant to their task. For example, it can help a programmer locate the line of code that 

draws text to the screen. It may not, however, help them find related but infrequently 

executed lines of code such as those required for setup. When using execution highlighting 

alone, a programmer could easily miss an important line of code that, for example, loads a 

font. 
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7.2.2 RELATED LINES 

Using Rehearse, the programmer can press a hotkey to identify lines of code that are likely 

related to the one she is currently editing (Figure 7.2). Related lines are demarcated by an 

orange highlight in the left margin of the editor. To determine which lines are related to the 

current line, the system examines all invocations of API methods on that line. The system 

then highlights any line that invokes a related method, as determined by a pre-computed 

mapping described below. 

7.2.3 IMPLEMENTATION 

The execution highlighting feature of Rehearse was implemented by adding a custom Java 

interpreter to Processing. Our interpreter is based heavily on BeanShell [65], which was 

 
Figure 7.2: Rehearse indicating lines related to the line currently being edited. The user’s cursor is circled in 
green; related lines are identified by orange highlights in the left margin. Display of related lines is triggered by a 
hotkey. 
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modified to support the Processing language, and to provide tracing of execution. When 

execution highlighting is enabled, the user’s code is executed in the interpreter. Calls to 

external methods (for example, those in the Processing API) are still executed as compiled 

bytecode inside Java’s Virtual Machine, and the link between the interpreted and compiled 

code is handled through Java’s reflection mechanism. This hybrid execution approach is 

crucial to achieving acceptable performance for most applications. It allows, for example, 

resource intensive API method calls to execute as fast as possible. 

Determination of related lines is handled through a pre-computed mapping that 

specifies what API methods are related to each other. This mapping is taken directly from 

the Processing documentation; Java’s API documentation provides a similar “related 

methods” paradigm. 

7.3 PILOT STUDY OF REHEARSE 

We hypothesized that Rehearse would help users understand and adapt example code more 

quickly because it would reduce the cost of identifying which lines are relevant to their task. 

To explore this hypothesis, we ran a pilot lab study. 

7.3.1 METHOD 

We recruited 12 university affiliates for a 45-minute, unpaid study. We required all 

participants to have proficiency in Java (at least equivalent to what is taught in the first year 

of a typical undergraduate CS curriculum). No participants in our study had familiarity with 

Processing. 
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Participants were randomly assigned to a control or treatment condition. Control 

users were provided with the current Processing IDE and treatment users were provided 

with Rehearse. All participants completed a tutorial on Processing adapted from 

Processing’s Web site, and treatment participants were introduced to Rehearse’s features 

through this tutorial. We then provided participants with written instructions asking them 

to complete two tasks. For each task, we measured task completion time and recorded 

qualitative observations. 

In the first task, participants started with an application that drew a rectangle on the 

screen each time the user pressed a key. The height of the rectangle varied by letter case: 

lower-case letters created rectangles half as tall as upper-case letters. Participants were asked 

to modify the height of rectangles created by lower-case letters. Completing this task 

required modifying one or two lines in an 89-line program, so participants were expected to 

spend the majority of their time identifying those lines. 

The second task was identical to the task used in our need-finding exercise: 

Participants were asked to add numbers to a provided analog clock application. Completing 

this task required integrating two existing applications, which necessitated writing or 

modifying approximately 10 lines of code in a 100-line application. 

7.3.2 RESULTS 

In task 1, Rehearse uses completed the task faster than the control group (p < 0.06, Mann-

Whitney U test). Control participants completed the task in 18.3 minutes on average; 

Rehearse uses spent 12.6 minutes on average, a 31% speed-up (see Table 7.1). One 
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participant in the treatment group chose not to attempt the first task, and is not included in 

these statistics. 

In task 2, Rehearse users completed the task faster than the control group—17.4 vs. 

22.2 minutes, a 22% speed-up—but this difference was not statistically significant (p ≈ 0.18, 

Mann-Whitney U test). One participant in the treatment group chose not to attempt the 

task, and is not included in these statistics. 

7.3.3 DISCUSSION 

The execution highlighting feature appeared to have the biggest impact on participants’ 

performance. This was most evident in Task 1, where the bulk of the task consisted of 

understanding where in the code to make a very simple change. One participant said, “First, I 

tried to hack around the example code to get it to work. When that did not work, I used 

execution highlighting to actually understand the code.” 

The related lines feature appeared useful for those participants who actually used it. 

Only 3 of the 6 participants in the treatment group did so, and these participants only used it 

on the second task. While it is not appropriate to draw conclusions from such a small sample, 

it is interesting to note that three of the four fastest participants on Task 2 were those who 

 Task 1 Task 2 
 T C T C 

1 14 22 18 18 
2 15 23 21 16 
3 — 20 16 23 
4 7 14 17 16 
5 13 21 15 41 
6 14 10 — 19 

Average 12.6 18.3 17.4 22.2 

Table 7.1: Task completion times for treatment (T) and control (C) participants. Participants using Rehearse 
completed the first task faster than those in the control condition (p < 0.06). 
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used the related lines feature. Additionally, the second fastest control participant on Task 2 

used the “related methods” portion of the Processing documentation, which provides the 

same information in a less efficient manner. 

The fact that the related lines feature was used infrequently suggests that it was not 

discoverable. We also believe that, as it is currently implemented, making use of this feature 

requires some skill at identifying when it might be useful. That is, the programmer has to have 

the foresight to predict that there may be related lines that she is not aware of. Improving 

this feature remains important future work. 

7.4 CONCLUSION 

Rehearse allows programmers to use examples more efficiently. The interactions supported 

by Rehearse stem from the insight that effective use of examples hinges on the programmer's 

ability to quickly identify a small number of relevant lines interleaved among a larger body of 

boilerplate code. Execution highlighting and automatic identification of related lines make it 

easier for programmers to focus their attention, leading to faster code understanding. 
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CHAPTER 8 FUTURE DIRECTIONS 

The Web has a substantially different cost structure than other information resources: It is 

cheaper to search for information, but its diverse nature may make it more difficult to 

understand and evaluate what is found. Understanding the Web’s role in knowledge work is a 

broad area of research [18]. This dissertation illustrates an emerging problem solving style 

that uses Web search to enumerate possible solutions. However, programmers—and likely, 

other knowledge workers—currently lack tools for rapidly understanding and evaluating 

these possible solutions. Experimenting with new tools in the “petri dish” of programming 

may offer further insights about how to better support other knowledge workers. 

8.1 TOWARD A COMPLETE PICTURE OF KNOWLEDGE WORK ON THE WEB 

This dissertation presented empirical data on how programmers leverage the Web to solve 

problems while programming. In many respects, programmers are an exemplar form of 

knowledge worker: their work centers on identifying, breaking down, and solving problems. 

Web resources will likely play an increasingly important role in problem solving in a broad 
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range of domains. In order to build a more complete picture of knowledge work on the Web, 

we must address several related issues. 

First, the work presented here looks expressly at the Web. Many additional resources 

exist, such as colleagues and books. It is clear that different resources have very different cost 

structures: The cost of performing a Web query is substantially lower than interrupting a 

colleague, but the latter may provide much better information. More work is needed to fully 

understand these trade-offs. 

Second, it would be valuable to better understand how a programmer’s own code is 

reused between projects. In earlier fieldwork we observed that programmers had a desire to 

reuse code, but found it difficult to do so because of lack of organization and changes in 

libraries (Chapter 2). 

Third, a complete understanding of knowledge work and the Web requires a richer 

theory of what motivates individuals to contribute information, such as tutorials and code 

snippets. How might we lower the threshold to contribution so that more developers share 

sample code? Is it possible to “crowdsource” finding and fixing bugs in online code? Can we 

improve the experience of reading a tutorial by knowing how the previous 1,000 readers used 

that tutorial? These are just some of the many open questions in this space. 

8.2 FURTHER TOOL SUPPORT FOR OPPORTUNISTIC PROGRAMMING 

We have identified four broad areas that we believe would benefit from better tool support: 

Code Reuse and Adaptation — The Web and tools like Blueprint have made a 

wealth of example code available and easier to locate. Similarly, tools like Rehearse help 

programmers understand examples more easily. The next step in this chain is to help 
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programmers adapt those examples. Our group’s recent work on d.mix explores one potential 

solution to this problem [39]. d.mix makes it easier for programmers to experiment with 

Web APIs by allowing them to “sample” existing user interfaces, and then experiment with 

the resulting code inside a wiki-like sandbox.  

Additionally, we may be able to guide the user in adapting found code by collecting 

information on how others have used that code. For example, if the last ten programmers to 

use an example all changed a particular portion of the code, it’s likely that the eleventh 

programmer should as well.  

Debugging — In opportunistic programming, debugging is difficult for a number of 

reasons: Many languages are used in a single project, code satisficing leads to code that is not 

well encapsulated, and developers often refuse to invest time in learning complex (but 

powerful) tools. We believe that there is significant value in building debugging tools that 

embrace the way opportunistic programmers already work. For example, perhaps print 

statements should be made a first-class tool. A development environment could make 

inserting or removing a print statement as easy as setting a breakpoint. The debugger could 

then capture a wealth of context at each of these “print”points: the call stack, the value of all 

local variables, and a snapshot of the program’s output. Similarly, perhaps development 

environments could take advantage of the rapid iteration inherent in opportunistic 

programming — code that was written 30 seconds ago is likely the code that the 

programmer wants to test and debug. Perhaps the “execution highlighting” interaction 

introduced in Chapter 7, could be adapted to provide something like real-time coverage 

checking. Simply indicating which lines of code were executed during the last run of the 

program would help programmers avoid time consuming debugging mistakes.  
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Alternatively, tools may be able to eliminate the need for rapid iteration in 

specialized cases, such as parameter tuning. Through a tool called Juxtapose, our research 

group introduced techniques for programmers to easily tune parameter values at runtime 

[41]. Interactive tuning is particularly valuable for exploring user interface variations, as 

alternatives can be considered without having to stop execution, edit, compile, execute, and 

navigate to the previous state.  

Version Control — Current version control systems have a large up-front setup and 

learning cost, and are targeted at supporting the development of large systems by many 

developers over months or years. What might version control look like for opportunistic 

programming? Our observations suggest that programmers would benefit from version 

control designed for a “10-minute scale”: Participants often wished that they could revert to 

the code they had, e.g., two tests ago, or quickly branch and explore two ideas in parallel. 

Perhaps single-user version control could be brought inside the editor, eliminating the setup 

burden of current tools. In such a system, code committal could be performed automatically 

each time the code is executed, reducing the need for programmers to think proactively 

about version management. Finally, perhaps users could browse past versions by viewing 

snapshots of the execution, removing the burden of explicitly specifying commit messages or 

applying tags. 

Documentation — Although much of the code that is written during opportunistic 

programming is thrown away, the process itself is extremely valuable. An exhibit designer at 

the Exploratorium commented that while he rarely went back to look at code from prior 

projects, he often reviewed his process. Right now, however, the tools for documenting 
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process (e.g., a notebook) are independent from the tools actually being used (e.g., Adobe 

Flash). We believe that bridging this divide is a valuable path for future research. 

8.3 THE FUTURE OF PROGRAMMING 

Ultimately, opportunistic programming is as much about having the right skills as it is about 

having the right tools. As tools become better, the skill set required of programmers changes. 

In the future, programmers may no longer need any training in the language, framework, or 

library du jour. Instead they will likely need ever-increasing skill in formulating and breaking 

apart complex problems. It may be that programming will become less about knowing how 

to do something and more about knowing how to ask the right questions. 

 



 

  95 

REFERENCES 

1. Google Code Search. [cited 2010 November 17] http://code.google.com 

2. Krugle. [cited 2010 November 17] http://www.krugle.com 

3. pastebin. [cited 2010 November 17] http://pastebin.com/ 

4. Pygments. [cited 2010 November 17] http://pygments.org/ 

5. Flex & Flash Builder Help and Support. [cited 2010 November 9] 
http://www.adobe.com/support/flex/ 

6. Adobe Developer Connection. [cited 2010 November 9] 
http://www.adobe.com/devnet.html 

7. Google Custom Search. [cited 2010 November 9] http://www.google.com/cse/ 

8. Adar, Eytan, Mira Dontcheva, James Fogarty, and Daniel S. Weld, Zoetrope: Interacting 
with the Ephemeral Web, in Proceedings of UIST: ACM Symposium on User Interface 
Software and Technology. 2008, Monterey, California. p. 239-248. 

9. Bajracharya, Sushil, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi, 
and Cristina Lopes, Sourcerer: A Search Engine for Open Source Code Supporting 
Structure-Based Search, in Companion to OOPSLA: ACM SIGPLAN Symposium on 
Object-Oriented Programming Systems, Languages, and Applications. 2006, Portland, 
Oregon. p. 681-682. 

10. Brandt, Joel, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer, 
Opportunistic Programming: Writing Code to Prototype, Ideate, and Discover, in IEEE 
Software. 2009. p. 18-24. 

11. Brandt, Joel, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer, 
Two Studies of Opportunistic Programming: Interleaving Web Foraging, Learning, and 
Writing Code, in Proceedings of CHI: ACM Conference on Human Factors in Computing 
Systems. 2009, Boston, Massachusetts. p. 1589-1598. 

12. Brandt, Joel, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer, Example-
Centric Programming: Integrating Web Search into the Development Environment, in 



 

  96 

Proceedings of CHI: ACM Conference on Human Factors in Computing Systems. 2010, 
Atlanta, Georgia. p. 513-522. 

13. Brooks, Frederick P., The Mythical Man-Month: Essays on Software Engineering. 1995, 
Reading, Massachusetts: Addison-Wesley. 

14. Brutlag, Jake D., Hilary Hutchinson, and Maria Stone, User Preference and Search 
Engine Latency, in Proceedings of QPRC: Quality & Productivity Research Conference. 
2008, Madison, Wisconsin. 

15. Brutlag, Jake D., Speed Matters for Google Web Search. 2009. 

16. Carter, Scott, Jennifer Mankoff, Scott R. Klemmer, and Tara Matthews, Exiting the 
Cleanroom: On Ecological Validity and Ubiquitous Computing. Human-Computer 
Interaction, 2008. 23(1): p. 47-99. 

17. Chong, Jan and Rosanne Siino, Interruptions on Software Teams: A Comparison of Paired 
and Solo Programmers, in Proceedings of CSCW: ACM Conference on Computer Supported 
Cooperative Work. 2006. 

18. Choo, Chun Wei, Brian Detlor, and Don Turnbull, Web Work: Information Seeking and 
Knowledge Work on the World Wide Web. 2000, Dordrecht: Kluwer Academic 
Publishers. 219 pp. 

19. Clarke, Steven, What is an End-User Software Engineer?, in End-User Software 
Engineering Dagstuhl Seminar. 2007, Dagstuhl, Germany. 

20. Cox, Anna L. and Richard M. Young, Device-Oriented and Task-Oriented Exploratory 
Learning of Interactive Devices. Proceedings of ICCM 2000: International Conference 
on Cognitive Modeling, 2000: p. 70-77. 

21. Csíkszentmihályi, Mihály, Flow: The Psychology of Optimal Experience. 1990, New York: 
Harper Collins. 

22. Cypher, Allen, Watch What I Do: Programming by Demonstration. 1993, Cambridge, 
Massachusetts: The MIT Press. 652 pp. 

23. Cypher, Allen, Mira Dontcheva, Tessa Lau, and Jeffrey Nichols, No Code Required: 
Giving Users Tools to Transform the Web. 2010, Burlington, Massachusetts: Morgan 
Kaufmann. 512 pp. 



 

  97 

24. deHaan, Peter. Flex Examples. [cited 2010 November 17] 
http://blog.flexexamples.com/ 

25. Detienne, Françoise, Software Design: Cognitive Aspects. 2001, New York: Springer. 146 pp. 

26. Dontcheva, Mira, Steven M. Drucker, Geraldine Wade, David Salesin, and Michael F. 
Cohen, Summarizing Personal Web Browsing Sessions, in Proceedings of UIST: ACM 
Symposium on User Interface Software and Technology. 2006, Montreux, Switzerland. p. 
115-124. 

27. Dontcheva, Mira, Steven M. Drucker, David Salesin, and Michael F. Cohen, Relations, 
Cards, and Search Templates: User-Guided Web Data Integration and Layout, in 
Proceedings of UIST: ACM Symposium on User Interface Software and Technology. 2007, 
Newport, Rhode Island. p. 61-70. 

28. Fry, Ben and Casey Reas. Processing. http://processing.org 

29. Gaul, Troy. Lightroom Exposed, Presentation at C4 Macintosh Development Conference. 
[cited 2010 November 9] http://www.viddler.com/explore/rentzsch/videos/37 

30. Gentner, D., Mental Models, Psychology of. International Encyclopedia of the Social 
and Behavioral Sciences, 2002: p. 9683-9687. 

31. Gentner, D., J. Loewenstein, and L. Thompson, Learning and Transfer: A General Role 
for Analogical Encoding. Journal of Educational Psychology, 2003. 95(2): p. 393-408. 

32. Gentner, Dedre, Keith J. Holyoak, and Boicho N. Kokinov, The Analogical Mind: 
Perspectives from Cognitive Science. 2001, Cambridge: MIT Press. 

33. Gick, M. L. and Keith J. Holyoak, Schema Introduction and Analogical Transfer. 
Cognitive Psychology, 1983. 

34. Goldman, Max and Robert C. Miller, Codetrail: Connecting Source Code and Web 
Resources, in Proceedings of VL/HCC: IEEE Symposium on Visual Languages and 
Human-Centric Computing. 2008, Herrsching am Ammersee, Germany. p. 65-72. 

35. Gray, Wayne D. and Deborah A. Boehm-Davis, Milliseconds Matter: An Introduction to 
Microstrategies and to Their Use in Describing and Predicting Interactive Behavior. Journal 
of Experimental Psychology: Applied, 2000. 6(4): p. 322-335. 



 

  98 

36. Grimes, Carrie, Diane Tang, and Daniel M. Russell, Query Logs Alone are Not Enough, 
in Workshop on Query Log Analysis at WWW 2007: International World Wide Web 
Conference. 2007, Banff, Alberta. 

37. Gross, Paul A., Micah S. Herstand, Jordana W. Hodges, and Caitlin L. Kelleher, A Code 
Reuse Interface for Non-Programmer Middle School Students, in Proceedings of IUI: 
International Conference on Intelligent User Interfaces. 2010, Hong Kong, China. p. 219-228. 

38. Hartmann, Björn, Scott R. Klemmer, Michael Bernstein, Leith Abdulla, Brandon Burr, 
Avi Robinson-Mosher, and Jennifer Gee, Reflective Physical Prototyping through 
Integrated Design, Test, and Analysis, in Proceedings of UIST: ACM Symposium on User 
Interface Software and Technology. 2006, Montreux, Switzerland. p. 299-308. 

39. Hartmann, Björn, Leslie Wu, Kevin Collins, and Scott R. Klemmer, Programming by a 
Sample: Rapidly Creating Web Applications with d.mix, in Proceedings of UIST: ACM 
Symposium on User Interface Software and Technology. 2007, Newport, Rhode Island. 
p. 241-250. 

40. Hartmann, Björn, Scott Doorley, and Scott R. Klemmer, Hacking, Mashing, Gluing: 
Understanding Opportunistic Design, in IEEE Pervasive Computing. 2008. p. 46-54. 

41. Hartmann, Björn, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer, 
Design as Exploration: Creating Interface Alternatives through Parallel Authoring and 
Runtime Tuning, in Proceedings of UIST: ACM Symposium on User Interface Software and 
Technology. 2008, Monterey, California. 

42. Hartmann, Björn, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer, What 
Would Other Programmers Do? Suggesting Solutions to Error Messages, in Proceedings of 
CHI: ACM Conference on Human Factors in Computing Systems. 2010, Atlanta, Georgia. 

43. Hearst, Marti A., Search User Interfaces. 2009, Cambridge: Cambridge University Press. 

44. Hoffmann, Raphael, James Fogarty, and Daniel S. Weld, Assieme: Finding and 
Leveraging Implicit References in a Web Search Interface for Programmers, in Proceedings of 
UIST: ACM Symposium on User Interface Software and Technology. 2007, Newport, 
Rhode Island. p. 13-22. 

45. Hollan, James, Edwin Hutchins, and David Kirsh, Distributed Cognition: Toward a New 
Foundation for Human-Computer Interaction Research. ACM Transactions on 
Computer-Human Interaction, 2000. 7(2): p. 174-196. 



 

  99 

46. Hopper, Grace, Keynote Address, in History of Programming Languages, Richard L. 
Wexelblat, Editor. 1981, New York: ACM Press. p. 7-20. 

47. Houde, Stephanie and Charles Hill, What do Prototypes Prototype?, in Handbook of 
Human-Computer Interaction, Martin G. Helander, Thomas K. Landauer, and Prasad V. 
Prabhu, Editors. 1997, Amsterdam: Elsevier Science. p. 367-381. 

48. Hutchins, Edwin L., James D. Hollan, and Donald A. Norman, Direct Manipulation 
Interfaces. Human-Computer Interaction, 1985. 1(4): p. 311-338. 

49. Kirsh, David and Paul Maglio, On Distinguishing Epistemic from Pragmatic Action. 
Cognitive Science, 1994. 18(4): p. 513-549. 

50. Ko, Andrew J., Brad A. Myers, and Htet Htet Aung, Six Learning Barriers in End-User 
Programming Systems, in Proceedings of VL/HCC: IEEE Symposium on Visual 
Languages and Human-Centric Computing. 2004, Rome, Italy. p. 199-206. 

51. Ko, Andrew J. and Brad A. Myers, Finding Causes of Program Output with the Java 
Whyline, in Proceedings of CHI: ACM Conference on Human Factors in Computing 
Systems. 2009, Boston, Massachusetts. p. 1569-1578. 

52. LaToza, Thomas D., Gina Venolia, and Robert DeLine, Maintaining Mental Models: A 
Study of Developer Work Habits, in Proceedings of ICSE: International Conference on 
Software Engineering. 2006, Shanghai, China. p. 492-501. 

53. Lau, Tessa and Eric Horvitz, Patterns of Search: Analyzing and Modeling Web Query 
Refinement, in Proceedings of UM: International Conference on User Modeling. 1999, 
Banff, Alberta, Canada. p. 119-128. 

54. Lieberman, Henry, Your Wish Is My Command: Programming by Example. 2001, San 
Francisco: Morgan Kaufmann. 448 pp. 

55. Lieberman, Henry, Fabio Paternò, and Volker Wulf, End-User Development. 2006, New 
York: Springer. 492 pp. 

56. Lin, James, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A. Lau, End-User 
Programming of Mashups with Vegemite, in Proceedings of IUI: International Conference 
on Intelligent User Interfaces. 2009, Sanibel Island, Florida. p. 97-106. 

57. Little, Greg and Robert C. Miller, Translating Keyword Commands into Executable Code, 
in Proceedings of UIST: ACM Symposium on User Interface Software and Technology. 
2006, Montreux, Switzerland. p. 135-144. 



 

  100 

58. Little, Greg, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser 
Kandogan, Koala: Capture, Share, Automate, Personalize Business Processes on the Web, in 
Proceedings of CHI: ACM Conference on Human Factors in Computing Systems. 2007, 
San Jose, California. p. 943-946. 

59. MacLean, Allan, Kathleen Carter, Lennart Lövstrand, and Thomas Moran, User-
Tailorable Systems: Pressing the Issues with Buttons, in Proceedings of CHI: ACM 
Conference on Human Factors in Computing Systems. 1990, Seattle, Washington.  
p. 175-182. 

60. Mandelin, David, Lin Xu, Rastislav Bodík, and Doug Kimelman, Jungloid Mining: 
Helping to Navigate the API Jungle, in Proceedings of PLDI: ACM SIGPLAN Conference 
on Programming Language Design and Implementation. 2005, Chicago, Illinois. p. 48-61. 

61. Martin, Robert C., Agile Software Development, Principles, Patterns, and Practices. 2002, 
Upper Saddle River, New Jersey: Prentice-Hall. 529 pp. 

62. Mayer, Richard E., The Psychology of How Novices Learn Computer Programming. ACM 
Computing Surveys, 1981. 13(1): p. 121-141. 

63. Medynskiy, Yevgeniy, Mira Dontcheva, and Steven M. Drucker, Exploring Websites 
through Contextual Facets, in Proceedings of CHI: ACM Conference on Human Factors in 
Computing Systems. 2009, Boston, Massachusetts. p. 2013-2022. 

64. Myers, Brad, Sun Young Park, Yoko Nakano, Greg Mueller, and Andrew Ko, How 
Designers Design and Program Interactive Behaviors, in Proceedings of VL/HCC: IEEE 
Symposium on Visual Languages and Human-Centric Computing. 2008. p. 177-184. 

65. Niemeyer, Pat. BeanShell. http://www.beanshell.org 

66. Novick, L., Analogical Transfer, Problem Similarity, and Expertise. Journal of Experimental 
Psychology, Learning, Memory, and Cognition, 1988. 13(3): p. 510-520. 

67. O'Brien, Timothy M. Dead Time (...code, compile, wait, wait, wait, test, repeat). 2006 
[cited 2010 November 17] http://www.oreillynet.com/onjava/blog/2006/03/ 
dead_time_code_compile_wait_wa.html 

68. O'Hara, Kenton P. and Stephen J. Payne, The Effects of Operator Implementation Cost on 
Planfulness of Problem Solving and Learning. Cognitive Psychology, 1998. 35(1): p. 34-70. 



 

  101 

69. Oney, Stephen and Brad Myers, FireCrystal: Understanding Interactive Behaviors in 
Dynamic Web Pages, in Proceedings of VL/HCC: IEEE Symposium on Visual Languages 
and Human-Centric Computing. 2009, Corvallis, Oregon. p. 105-108. 

70. Ousterhout, John K., Scripting: Higher-Level Programming for the 21st Century. IEEE 
Computer, 1998: p. 23-30. 

71. Pirolli, Peter L. T., Information Foraging Theory. 2007, Oxford: Oxford University Press. 

72. Reason, James, Human Error. 1990, Cambridge: Cambridge University Press. 

73. Richardson, Leonard. Beautiful Soup. 
http://www.crummy.com/software/BeautifulSoup 

74. Rosson, Mary Beth and John M. Carroll, The Reuse of Uses in Smalltalk Programming. 
TOCHI: ACM Transactions on Human-Compter Interaction, 1996. 3(3): p. 219-253. 

75. Sahavechaphan, Naiyana and Kajal Claypool, XSnippet: Mining for Sample Code, in 
Proceedings of OOPSLA: ACM SIGPLAN Symposium on Object-Oriented Programming 
Systems, Languages, and Applications. 2006. p. 413-430. 

76. Scaffidi, Christopher, Mary Shaw, and Brad A. Myers, Estimating the Numbers of End 
Users and End User Programmers, in Proceedings of VL/HCC: IEEE Symposium on 
Visual Languages and Human-Centric Computing. 2005, Dallas, Texas. p. 207-214. 

77. Schrage, Michael, Serious Play: How the World's Best Companies Simulate to Innovate. 
1999, Boston: Harvard Business School Press. 244 pp. 

78. Silverstein, Craig, Hannes Marais, Monika Henzinger, and Michael Moricz, Analysis of 
a Very Large Web Search Engine Query Log. ACM SIGIR Forum, 1999. 33(1): p. 6-12. 

79. Stylos, Jeffrey and Brad A. Myers, Mica: A Web-Search Tool for Finding API Components 
and Examples, in Proceedings of VL/HCC: IEEE Symposium on Visual Languages and 
Human-Centric Computing. 2006, Brighton, United Kingdom. p. 195-202. 

80. Teevan, Jaime, Edward Cutrell, Danyel Fisher, Steven M. Drucker, Gonzalo Ramos, 
Paul André, and Chang Hu, Visual Snippets: Summarizing Web Pages for Search and 
Revisitation, in Proceedings of CHI: ACM Conference on Human Factors in Computing 
Systems. 2009, Boston, Massachusetts. p. 2023-2032. 



 

  102 

81. Thummalapenta, Suresh and Tao Xie, PARSEweb: A Programmer Assistant for Reusing 
Open Source Code on the Web, in Proceedings of ASE: IEEE/ACM International 
Conference on Automated Software Engineering. 2007, Atlanta, Georgia. p. 204-213. 

82. Turkle, Sherry and Seymour Papert, Epistemological Pluralism: Styles and Voices within 
the Computer Culture. Signs: Journal of Women in Culture and Society, 1990. 16(1). 

83. Wing, Jeannette M, Computational Thinking, in Communications of the ACM. 2006. p. 33-35. 

84. Wong, Jeffrey and Jason I. Hong, Marmite: Towards End-User Programming for the Web, 
in Proceedings of VL/HCC: IEEE Symposium on Visual Languages and Human-Centric 
Computing. 2007. p. 270-271. 

85. Woodruff, Allison, Andrew Faulring, Ruth Rosenholtz, Julie Morrsion, and Peter 
Pirolli, Using Thumbnails to Search the Web, in Proceedings of CHI: ACM Conference on 
Human Factors in Computing Systems. 2001, Seattle, Washington. p. 198-205. 

86. Yeh, Ron B., Andreas Paepcke, and Scott R. Klemmer, Iterative Design and Evaluation of 
an Event Architecture for Pen-and-Paper Interfaces, in Proceedings of UIST: ACM 
Symposium on User Interface Software and Technology. 2008, Monterey, California. 

 
 




