

Rehearse:
 Coding Interactively while Prototyping

William Choi, Joel Brandt, Scott R. Klemmer
Stanford University HCI Group

Computer Science Department, Stanford, CA 94305, USA
{wchoi, jbrandt, srk}@cs.stanford.edu

ABSTRACT
To encourage design thinking while prototyping in code,
development tools should help programmers in both “get-
ting the right code” and “getting the code right.” To support
these principles, we introduce Rehearse, a source code edi-
tor that enables interactive development of JavaScript with
immediate evaluation and infinite undo of execution. The
system demonstrates a tight coupling of two traditionally
separate tools: a source code editor and a read-eval-print
loop. A first-use study confirmed the usefulness of the tool
in alleviating frequent edit-debug cycles inherent in proto-
typing, but such a tool must be integrated into existing
practices in order to be adopted.
ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces – Graphical user interfaces;
D.2.6 [Programming environments]: Interactive environments
General terms: Design, Human Factors
Keywords: Prototyping, interactive development, undo,
design thinking, design tools

INTRODUCTION
Prototyping is a design thinking task characterized by ex-
ploration of alternatives and iterative cycles of develop-
ment and evaluation [3]. However, prototyping in code is
often a challenge because current tools do not foreground
these ideals. For example, when creating functional proto-
types, programmers often rapidly switch between writing a
few lines of code and testing those lines – in a recent study,
we found that during prototyping 50% of all edit-debug
cycles were less than 30 seconds in length [1]. In these cy-
cles, a great deal of time is spent getting the program to a
state where the new lines can be tested. We suggest that
this evaluation burden hinders the prototyping process:
programmers settle on code that works but does not fully
explore their current idea, and settle on an idea that is im-
plemented when exploring more ideas would be beneficial.
This disconnect motivates our ongoing work to understand
how tools can better encourage design thinking while pro-
totyping in code. We hypothesize that design thinking dur-
ing programming comprises two related tasks: getting the
code right (I know what I want to implement; does the code
I wrote implement that?), and getting the right code (was
what I implemented the right thing to implement?).

Getting the code right: Tools need to decrease the amount
of time between authoring a statement and evaluating the
effect of that statement.
Getting the right code: Tools need to make it easier to
backtrack and explore multiple paths. Tools should mini-
mize the cost of deciding to put the current approach on
hold and try a new one.
We are building Rehearse, a tool that explores new user
interfaces for programming with these ideas in mind. We
describe the first version of this tool, present the results of a
first-use study, and discuss future research directions.

REHEARSE
Rehearse is a tool that supports interactive development in
JavaScript. Using the tool, programmers can specify that a
certain piece of code—a JavaScript function in this case—
will be defined interactively, deferring the actual writing of
the code until the first time it would be executed.
When the function is called for the first time, the user is
automatically presented with the interactive editor (Figure 1),
which shows the pre-defined function and parameter names
as well as actual values of the parameters passed in.
The interactive editor resembles a read-eval-print loop in
that each statement is immediately executed within the cur-

Copyright is held by the author/owner(s).
UIST’08, October 19-22, 2008, Monterey, California, USA
ACM 978-1-59593-975-3/08/10

1

2
3

4

5

Figure 1: A screenshot of the Rehearse editor. (1) The
function declaration, parameter names, and current values;
(2) a statement that has been executed and (3) the result of
execution; (4) an undone statement; (5) the current line.

rent scope and the effects of that statement are immediately
visible in the execution environment (here, the web
browser). The string representation of the result of the
statement is also displayed in the editor. This immediate
execution and feedback helps programmers with the task of
“getting the code right.”
Rehearse goes beyond traditional read-eval-print loops in
two ways. First, it allows programmers to undo executed
lines, leading to an easier exploration of multiple alterna-
tives and thus assisting the task of “getting the right code.”
Second, the interactive editor is tightly integrated with the
standard development process: when the user is done writ-
ing a function interactively, Rehearse places the function
definition in the appropriate source code file and injects the
function into the browser’s DOM so that development can
proceed uninterrupted. This gives the programmer the
flexibility of implementing some functionality interactively
and other functionality in the traditional manner.

RELATED WORK
Many self-contained systems for teaching computer sci-
ence, such as Alice [2], employ immediate evaluation to
make development a more interactive experience. While
these systems demonstrate the effectiveness of interactive
development, it is typically difficult to build large applica-
tions inside these systems because all code must be written
interactively. Similarly, many languages, such as Python
and LISP, provide interactive read-eval-print loops to aid
experimentation and testing. These environments, however,
are transient, making it difficult to integrate what has been
created into a larger project. Rehearse extends these two
ideas, allowing users to implement some functionality in-
teractively, and then feed this functionality back into the
system they are building.
Rehearse also builds on many ideas from testing and de-
bugging tools. For example, the Omniscient Debugger al-
lows users to step backward in time after a breakpoint is
reached [4]. Rehearse transfers this idea from code debug-
ging to code authoring, allowing users to undo and redo
execution during development. Rothermel et al.’s work on
“What You See is What You Test” (WYSIWYT) explores
visual representations to help guide users when debugging
spreadsheets [5]. The visual feedback provided by Re-
hearse is similar at a high level: Rehearse offers both spa-
tial (the result of a statement is displayed below the state-
ment) and temporal (the statement is executed and its ef-
fects are seen immediately) feedback for every statement
written to help guide debugging.

USER STUDY
We ran a small first-use study to help guide our future work
on Rehearse. Four experienced web programmers partici-
pated in a one-hour session. Participants were Masters and
Ph.D. students in Computer Science, and all had at least 6
years of programming experience. Participants were asked
to add two features to a simple web-based forum: a reply to
this post feature where the reply user interface was added
dynamically and the reply was submitted using AJAX, and
a display profile feature that would display a pop-up win-
dow showing a user’s profile retrieved via AJAX.

The first task was completed with guidance from one of the
researchers (while another observed) in order to orient the
participant to the system; the second task was completed by
the participant on her or his own. Participants were asked to
think aloud during their work. When participants expressed
confusion or frustration, we broke into a brief participatory
design session to more deeply understand the breakdown.

FINDINGS & FUTURE WORK
Based on qualitative data gathered during the first-use
study, we have identified three directions for future work:
1. Interactions in Rehearse must match existing pro-
gramming practices: Much of the confusion users experi-
enced stemmed from the differences between Rehearse and
traditional editors. Common operations, like inserting or
reordering a line in the middle of a code block, were diffi-
cult to do in inside Rehearse: users were required to undo
to the point at which they wanted to make the edit, and then
redo subsequent statements. We are currently extending
Rehearse to allow users to edit any line by performing the
necessary undo and redo operations in the background.
2. Users must be able to fluidly move between Rehearse
and traditional tools: In the current system, users cannot
make changes with their traditional editor while defining a
function interactively. In practice, users often want to edit
multiple functions at the same time (e.g., to modify a func-
tion they are about to call). This suggests integrating Re-
hearse into the traditional editor: statements written in the
currently executing function should be executed interac-
tively, and statements written elsewhere should be injected
into the system, but not executed until the appropriate time.
3. While Rehearse supports the exploration of multiple
paths at the statement level, support for exploration at
the “feature” level is also needed: Rehearse allowed pro-
grammers to explore multiple solutions at the several-
statement level through undo and redo. However, there is
currently no support for “undo” or “redo” of larger
changes. This makes it difficult to, for example, experiment
with several wholly different interactions. We are currently
working on an extremely lightweight version control tool to
complement Rehearse that will address this need.

REFERENCES
1 Brandt, J., P. Guo, J. Lewenstein, and S. Klemmer. Opportunistic

Programming: How Rapid Ideation and Prototyping Occur in Prac-
tice. In WEUSE: Workshop on End-User Software Engineering,
Leipzig, Germany, 2008.

2 Conway, M., et al. Alice: lessons learned from building a 3D system
for novices. In Proceedings of CHI: ACM Conference on Human
Factors in Computing Systems, The Hague, The Netherlands, 2000.

3 Hartmann, B., S. Klemmer, M. Bernstein, et al. Reflective Physical
Prototyping through Integrated Design, Test, and Analysis. In Pro-
ceedings of UIST: ACM Symposium on User Interface Software
and Technology, Montreux, Switzerland, 2006.

4 Lewis, B. Omniscient Debugger.
http://www.lambdacs.com/debugger/, 2003.

5 Rothermel, K., et al. WYSIWYT Testing in the Spreadsheet Para-
digm: An Empirical Evaluation. In Proceedings of ICSE: Inerna-
tional Conference on Software Engineering, Limerick, Ireland, 2000

